Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Evaluation of the possibility of substitution of steel part in the car body by the one made of AZ31 alloy was the main objective of the whole project. The objective of this paper was to determine the flow stress model, which accounts for the difference in the behavior of magnesium alloys during tension and compression. Tension tests on Zwick machine and compression tests on Gleeble 3800 were performed. Inverse analysis was applied to interpretation of the results of the tests. Separate numerical models for tension and compression were implemented into Abaqus software and simulations of the stamping were performed. Sensitivity of the results to the flow stress model was evaluated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
72--81
Opis fizyczny
Bibliogr. 23 poz., fot., rys., wykr.
Twórcy
autor
- AGH University of Science and Technology, Mickiewicza 30, 30‑059 Kraków, Poland
autor
- Institute for Ferrous Metallurgy, K. Miarki 12, 44‑100 Gliwice, Poland
autor
- AGH University of Science and Technology, Mickiewicza 30, 30‑059 Kraków, Poland
autor
- AGH University of Science and Technology, Mickiewicza 30, 30‑059 Kraków, Poland
autor
- AGH University of Science and Technology, Mickiewicza 30, 30‑059 Kraków, Poland
autor
- Wrocław University of Technology, Łukasiewicza 5, 50‑371 Wrocław, Poland
autor
- Kirchhoff Polska Sp. z o.o., ul. Wojska Polskiego, 39‑300 Mielec, Poland
Bibliografia
- [1] Blawert C, Hort N, Kainer KU. Automotive applications of magnesium and its alloys. Trans Indian Inst Met. 2004;57:397–408.
- [2] Kawalla R, Lehmann G, Ullmann M, Vogt H-P. Magnesium semifinished products for vehicle construction. Int J Adv Manuf Technol. 2008;8:93–101.
- [3] Kumar DS, Sasanka CT, Ravindra K, Suman KNS. Magnesium and its alloys in automotive applications. Am J Mater Sci Technol. 2015;4:12–30.
- [4] Musfirah AH, Jaharah AG. Magnesium and aluminum alloys in automotive industry. J Appl Sci Res. 2012;8:4865–75.
- [5] Ambroziński M, Rauch Ł, Paćko M, Gronostajski Z, Jaśkiewicz K, Chorzępa W. Computer aided design of manufacturing of automotive part made of magnesium alloy. Comput Methods Mater Sci. 2016;16(4):177–85.
- [6] Gzyl M, Rosochowski A, Pesci R, Olejnik L, Yakushina E, Wood P. Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP. Metall Mater Trans A. 2014;45A:1609–20.
- [7] Kawalla R, Ullmann M, Oswald M, Schmidt C. Properties of strips and sheets of magnesium alloy produced by casting-rolling technology. In: Kainer KU, Dresden, (eds). Proc. 7th int. conf. on magnesium alloys and their applications. 2006, pp. 364–369.
- [8] Ullmann M, Oswald M, Gorelova S, Kawalla R, Vogt HP. Strip rolling technology of magnesium alloys. In: Steel Research International, Spec. issue 14th Metal Forming Conf., 2012, pp. 855–858.
- [9] Kuc D, Hadasik E, Schindler I, Kawulok P, Sliwa R. Characteristics of plasticity and microstructure of hot forming magnesium alloys Mg–Al–Zn type. Arch Metall Mater. 2013;58:151–6.
- [10] El-Morsy A, Ismail A, Waly M. Microstructural and mechanical properties evolution of magnesium AZ61 alloy processed through a combination of extrusion and thermomechanical processes. Mater Sci Eng A. 2008;486:528–33.
- [11] Qin Y-J, Pan Q-L, He Y-B, Li W-B, Liu X-Y, Fan X. Modeling of flow stress for magnesium alloy during hot deformation. Mater Sci Eng A. 2010;527:2790–7.
- [12] Raghunath BK, Raghukandan K, Karthikeyan R, Palanikumar K, Pillai UTS, Gandhi RA. Flow stress modeling of AZ91 magnesium alloys at elevated temperature. J Alloys Compd. 2011;509:4992–8.
- [13] Sheng ZQ, Shivpuri R. Modeling flow stress of magnesium alloys at elevated temperature. Mater Sci Eng, A. 2006;419:202–8.
- [14] Xu Y, Hu L-X, Sun Y. Hot deformation behavior and microstructure evolution of as-cast AZ91D magnesium alloy without prehomogenization treatment. Rare Met. 2013;34:338–46.
- [15] Kuc D, Pietrzyk M. Physical and numerical modelling of plastic deformation of magnesium alloys. Comput Methods Mater Sci. 2010;10:130–42.
- [16] Barnett MR, Davies CHJ, Ma X. An analytical constitutive law for twinning dominated flow in magnesium. Scr Mater. 2005;52:627–32.
- [17] Sellars CM, McTeggart G. Hot workability. Int Met Rev. 1972;17:1–24.
- [18] Szeliga D, Gawąd J, Pietrzyk M. Inverse analysis for identification of rheological and friction models in metal forming. Comput Methods Appl Mech Eng. 2006;195:6778–98.
- [19] Szeliga D, Gawąd J, Pietrzyk M, Kuziak R. Inverse analysis of tensile tests. Steel Res Int. 2005;76:807–14.
- [20] Gawąd J, Kuziak R, Madej Ł, Szeliga D, Pietrzyk M. Identification of rheological parameters on the basis of various types of compression and tension tests. Steel Res Int. 2005;76:131–7.
- [21] Lou XY, Li M, Boger RK, Agnew SR, Wagoner RH. Hardening evolution of AZ31B Mg sheet. Int J Plast. 2007;23:44–86.
- [22] Nguyen N-T, Seo OS, Lee CA, Lee M-G, Kim J-H, Kim HY. Mechanical behavior of AZ31B Mg alloy sheets under monotonic and cyclic loadings at room and moderately elevated temperatures. Materials. 2014;7:1271–95.
- [23] Chino Y, Kimura K, Mabuchi M. Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy. Mater Sci Eng A. 2008;486:481–8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-811aae84-dfe0-4031-88d8-7a4139d3da43