PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of water and mineral oil on mechanical losses in a hydraulic motor for offshore and marine applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, mechanical losses in a hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties) are described and compared. The experimental tests were conducted using a special design (prototype) of a hydraulic satellite motor. The design of the satellite motor is presented. This motor was developed to supply both with water and mineral oil and features a non-circular tooth working mechanism. The paper also characterizes sources of mechanical losses in this motor. On this basis, a mathematical model of these losses has been developed and presented. The results of calculation of mechanical losses according to the model are compared with the experimental results. Experimental studies have shown that the mechanical losses in the motor supplied with water are 2.8 times greater than those in the motor supplied with oil. The work demonstrates that the mechanical losses in both the motor supplied with water and the one supplied with oil are described well by the mathematical model. It has been found that for the loaded motor working at high speed, the simulation results differ from experimental ones by no more than 3% for oil and 4% for water.
Słowa kluczowe
Rocznik
Tom
Strony
125--135
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Balawender A. (2005): Physical and mathematical model of losses in hydraulic motors. Developments in mechanical engineering, Gdansk University of Technology Publishers.
  • 2. Bing X., Junhui Z., Huayong Y., Bin Z. (2013): Investigation on the Radial Micro-motion about Piston of Axial Piston Pump. Chinese Journal of Mechanical Engineering, Vol. 26, No. 2. DOI:10.3901/CJME.2013.02.325.
  • 3. Deptula A., Osinski P., Partyka M. (2017): Identification of influence of part tolerances of 3PWR-SE pump on its total efficiency taking into consideration multi-valued logic trees. Polish Maritime Research, 1(93), Vol. 24. DOI: 10.1515/pomr-2017-0006
  • 4. Dietrich M. et al (1999): Fundamentals of Machine Design, WNT Warszawa.
  • 5. Gao J., Huang W., Quan L., Huang J. (2017): The distributed parameter model of hydraulic axial piston motor and its application in hydraulic excavator swing systems. Proceedings of the Institution of Mechanical Engineers. Part I. Journal of Systems and Control Engineering. DOI:10.1177/0959651817704098
  • 6. Guzowski A., Sobczyk A. (2014): Reconstruction of hydrostatic drive and control system dedicated for small mobile platform. American Society of Mechanical Engineers. DOI: dx.doi.org/10.1115/FPNI2014-7862.
  • 7. Jasinski R. (2008): Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part I). Polish Maritime Research, No. 4/ (58), Vol. 15. DOI: doi.org/10.2478/v10012-007-0095-9
  • 8. Jasinski R. (2009): Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part II). Polish Maritime Research, No. 1/ (59), Vol. 16. DOI: doi.org/10.2478/v10012-008-0012-x
  • 9. Jasinski R. (2009): Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part III). Polish Maritime Research, No. 4(62), Vol. 16. DOI: 10.2478/v10012-008-0052-2
  • 10. Ke M., Ding F., Li B., Chen Z. (2006): Exploration of the influence of backing pressure on the efficiency of hydraulic motor. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery 37(10).
  • 11. Kollek W., Osinski P., Wawrzycka U. (2017): The influence of gear micropump body asymmetry on stress distribution. Polish Maritime Research, 1(93), Vol. 24. DOI: 10.1515/pomr-2017-0007
  • 12. Landvogt B., Osiecki L., Patrosz P., Zawistowski T., Zylinski B. (2014): Numerical simulation of fluid-structure interaction in the design process for a new axial hydraulic pump. Progress in Computational Fluid Dynamics. Vol. 14, Issue 1. DOI: doi.org/10.1504/PCFD.2014.059198
  • 13. Litwin W., Dymarski C. (2016): Experimental research on water lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear. Tribology International Vol. 95. DOI: 10.1016/j.triboint.2015.12.005
  • 14. Litwin W., Olszewski A. (2014): Water-Lubricated Sintered Bronze. Journal Bearings – Theoretical and Experimental Research. Tribology Transactions, No. 1, Vol. 57. DOI:10.1080/10402004.2013.856980
  • 15. Lubinski J., Sliwinski P. (2014): Multi parameter sliding test result evaluation for the selection of material pair for wear resistant components of a hydraulic motor dedicated for use with environmentally friendly working fluids. Solid State Phenomena, Vol. 225. DOI: 10.4028/www.scientific.net/SSP.225.115
  • 16. Maczyszyn A. (2014): Energy analysis of rotary positive displacement machines used in hydrostatic transmissions. PhD thesis. Gdansk University of Technology.
  • 17. Niemann G., Winter H. (2003): Maschinenelemente – Band 2. Springer-Verlag. Berlin, Germany.
  • 18. Osiecki L., Patrosz P., Landvogt B., Piechna J., Zawistowski T., Zylinski B. (2013): Simulation of fluid structure interaction in a novel design of high pressure axial piston hydraulic pump. Archive of Mechanical Engineering. The Journal of Committee on Machine Building of Polish Academy of Sciences. Vol. 60, Issue 4. DOI: https://doi. org/10.2478/meceng-2013-0031
  • 19. Osiecki L., Patrosz P., Zawistowski T., Landvogt B., Piechna J., Zylinski B. (2011): Compensation of pressure peaks in PWK type hydraulic pumps. Key engineering materials. Vol. 490. DOI: 10.4028/www.scientific.net/KEM.490.33
  • 20. Osinski P., Deptula A., Partyka M. (2013): Discrete optimization of a gear pump after tooth root undercutting by means of multi-valued logic trees. Archives of Civil and Mechanical Engineering, No. 4/2013, DOI: 10.1016/j.acme.2013.05.001.
  • 21. Paszota Z. (2016): Energy losses in hydrostatic drive. LABERT Academic Publishing.
  • 22. Paszota Z. (2010): Energy losses in the hydraulic rotational motor – definitions and relations for evaluation of the efficiency of motor and hydrostatic drive. Polish Maritime Research, 2(65), Vol 17. DOI: 10.2478/v10012-010-0017-0
  • 23. Paszota Z. (2007): Power of energetic losses in hydrostatic drive system elements – definition, relationships, ranges of changes, energetic efficiencies. Part 1 – hydraulic motor. Napędy i Sterowanie, 11/2007, Poland.
  • 24. Paszota Z. (2008): Theoretical and mathematical models of torque of mechanical losses in hydraulic rotary motor used in the hydrostatic drive. International Conference CYLINDER “Research, design, manufacture and operation of hydraulic system”, KOMAG Mining Mechanisation Centre, Gliwice, Poland.
  • 25. Patrosz P. (2014): Deformation in the axial clearance compensation node in the satellite pump unit. Hydraulika i Pneumatyka, 1/2014, Poland.
  • 26. Pobedza J., Sobczyk A. (2014): Properties of high pressure water hydraulic components with modern coatings. Advanced Materials Research. Trans Tech Publications Ltd, 849/2014. DOI: 10.4028/www.scientific.net/AMR.849.100.
  • 27. Sliwinski P. (2014): Satellite pump and motor. Machines Technologies Materials, Vol. 8, Issue 9, Bulgaria.
  • 28. Sliwinski P. (2014): High pressure rotational seals for shaft of hydraulic displacement machines. Hydraulika i Pneumatyka, 3/2014, Poland.
  • 29. Sliwinski P. (2013): Pressure losses and power balance in the unloaded satellite pump. Hydraulika a Pneumatika, 1-2/2013, Slovakia.
  • 30. Sliwinski P. (2014): The flow of liquid in flat gaps of satellite motors working mechanism. Polish Maritime Research, No. 2(82), Vol. 21. DOI: 10.2478/pomr-2014-0019.
  • 31. Sliwinski P. (2017): The influence of water and mineral oil on volumetric losses in a hydraulic motor. Polish Maritime Research, No. S1 (93), Vol. 24. DOI: 10.1515/pomr-2017-0041.
  • 32. Sliwinski P. (2016): Satellite displacement machines. Basic of design and analysis of power loss. Gdansk University of Technology Publishers.
  • 33. Walczak P., Sobczyk A. (2014): Simulation of water hydraulic control system of Francis turbine. American Society of Mechanical Engineers. DOI: dx.doi.org/10.1115/ FPNI2014-7814
  • 34. Xiaogang Z., Long Q, Yang Y., Chengbin W., Liwei Y. (2012): Output characteristics of a series three-port axial piston pump. Chinese Journal of Mechanical Engineering, No. 3, Vol. 25. DOI: 10.3901/CJME.2012.03.498
  • 35. Yu H., Luo C., Wang H. (2012): Performances of a balanced hydraulic motor with planetary gear train. Chinese Journal of Mechanical Engineering, No. 4, Vol. 25. DOI: 10.3901/ CJME.2012.04.760
  • 36. Zardin B., Natali E., Borghi M. (2019): Evaluation of the hydro-mechanical efficiency of external gear pumps. Energies, Vol. 12. DOI: 10.3390/en12132468
  • 37. Zardin B., Borghi M., Materi S., Argentino P. (2018): Fluiddynamic analysis of an in-line water piston pump. 73rd Conference of the Italian-Thermal-Machines-Engineering- Association. Pisa, Italy. Energy Procedia, Vol. 148. DOI: 10.1016/j.egypro.2018.08.048
  • 38. Zloto T., Nagorka A. (2009): An efficient FEM for pressure analysis of oil film in a piston pump. Applied Mathematics and Mechanics, No. 1/2009, Vol. 30.
  • 39. Catalogue of products made by Harken: www.harken.pl
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-811a1783-1621-4950-9f63-6b4629d11b9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.