PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Permeability of P and K-nutrient through polystyrene membrane from aqueous solutions of urea + KH2PO4

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the polymer-coated fertilizer as background, the permeability of P- and K-nutrient through a representative polymer membrane-polystyrene membrane were investigated by measuring their permeability in the solutions of KH2 PO4 -water and urea-KH2 PO4 water at nominal temperature of 298 K using the Ussing chamber method. To analyze and interpret the variation of permeability with solute concentration, the solubility of permeate in polymer membrane were determined experimentally and the permeate diffusion coefficient were assessed by the measurements of density and apparent molar volume of the aqueous fertilizer solutions. An interesting “increase-decrease” trend for the permeability of both phosphorous (P)-nutrient, and potassium (K)-nutrient fertilizer with permeate concentration was observed, in which the increases in permeability at low concentrations of permeate could be attributed to the increase in solubility of KH2 PO4  in polymer while the decreases in permeability at high concentrations was due to the decrease in diffusion coefficient of permeate in polymer membrane. Finally, the release kinetics of these nutrients from a PS-coated urea-KH2 PO4  compound fertilizer granule was predicted using the Shaviv’s model along with the permeability data of P- and K-nutrient generated.
Rocznik
Strony
113--122
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Hefei University of Technology, College of Mechanical Engineering, 193 Tunxi Road, Hefei, Anhui, China, 230009
autor
  • Hefei University of Technology, College of Chemical Engineering and Chemical Technology, 193 Tunxi Road, Hefei, Anhui, China, 230009
autor
  • University of Technology, College of Chemical Engineering and Chemical Technology, 193 Tunxi Road, Hefei, Anhui, China, 230009
autor
  • Hefei University of Technology, College of Mechanical Engineering, 193 Tunxi Road, Hefei, Anhui, China, 230009
autor
  • Cotton Research Institute of Anhui Academy of Agricultural Sciences, 40 Nongke Road, Hefei, Anhui, China, 230001
Bibliografia
  • 1 . Hombach, J., Hoyer, H. & Bernkopschnürch, A.: Thiolated chitosans: development and in vitro evaluation of an oral tobramycin sulphate delivery system. European J. Pharmac. Sci. 33(1), 1 (2008). DOI: 10.1016/j.ejps.2007.09.001.
  • 2 . Larsson, M., Hjärtstam, J., Berndtsson, J., Stading, M. & Larsson, A.: Effect of ethanol on the water permeability of controlled release films composed of ethyl cellulose and hydroxypropyl cellulose. Europ. J. Pharmac. & Biopharmac. 76(3), 428 (2010). DOI: 10.1016/j.ejpb.2010.09.007.
  • 3 . Cabello, S.D.P., Mollá, S., Ochoa, N.A., Marchese, J., Giménez, E. & Compañ, V.: New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. J. Power Sour. 265(11), 345-355 (2014). DOI: 10.1016/j.jpowsour.2014.04.093 .
  • 4 . Seden, M.G., Baştürk, E., Inan, T.Y., Apohan, N.K. & Güngör, A.: Synthesis and fuel cell characterization of blend membranes from phenyl phosphine oxide containing flourinated novel polymers. J. Power Sourc. 271, 465-479 (2014). DOI: 10.1016/j.jpowsour.2014.08.032.
  • 5 . Ussing, H.H. & Zerahn, K.: Active Transport of sodium as the source of electric current in the short-circuited isolated frog skin. J. Amer. Soc. Nephrol. 23(2-3), 110-127 (1999). DOI: 10.1111/j.1748-1716.1951.tb00800.x.
  • 6 . Awati, A., Rutherfurd, S.M., Plugge, W., Reynolds, G.W., Marrant, H., Kies, A.K. & Moughan, P.J.: Ussing chamber results for amino acid absorption of protein hydrolysates in porcine jejunum must be corrected for endogenous protein. J. Sci. Food & Agric. 89(11), 1857-1861 (2009). DOI: 10.1002/ jsfa.3662.
  • 7 . Hamilton, K.L.: Ussing’s “Little Chamber”: 60 Years Old and Counting. Front. Phys. 2(2), 6 (2011). DOI: 10.3389/ fphys.2011.00006.
  • 8. Watanabe, A., Takebayashi, Y., Ohtsubo, T. & Furukawa, M.: Permeation of urea through various polyurethane membranes. Pest Managem. Sci. 65(11), 1233-1240 (2009). DOI: 10.1002/ps.1815.
  • 9 . Wei, Y., Li, J., Li, Y., Zhao, B., Zhang, L., Yang, X. & Chang, J.: Research on permeability coefficient of a polyethylene controlled-release film coating for urea and relevant nutrient release pathways. Polymer Testing 59, 90-98 (2017). DOI: 10.1016/j.polymertesting.2017.01.019.
  • 10. Chen, C., Tao, S., Qiu, X., Ren, X. & Hu, S.: Long- -alkane-chain modified N-phthaloyl chitosan membranes with controlled permeability. Carbohydr. Polym. 91(1), 269 (2013). DOI: 10.1016/j.carbpol.2012.08.042.
  • 11. Rui, Yonghui, Liu, Guanda, Wang, Tingjie, Wang & Chengyou, Kan: Experimental modeling of polymer latex spray coating for producing controlled-release urea. Particuology 09(5), 510-516 (2011). DOI: 10.1016/j.partic.2011.01.004.
  • 12. Li, X., Bei, L., Sun, Z., Liu, K., Zhang, X. & Han, X.: Permeation of fertilizer nutrients through polymer membrane: part I. Effect of P, K, and micronutrient fertilizer on permeability of urea. Asia-Pacific J. Chem. Engineer. 11(2), 305-313 (2016). DOI: 10.1002/apj.1977.
  • 13. Lonsdale, H.K., Merten, U. & Riley, R.L.: Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci. 9(4), 1341-1362 (2010). DOI:10.1002/app.1965.070090413.
  • 14. Okada, T. & Matsuura, T.: A new transport model for pervaporation. J. Membrane Sci. 59(2), 133-149 (1991). DOI: 10.1016/S0376-7388(00)81179-5.
  • 15. Li, X., Bei, L., Sun, Z., Liu, K., Zhang, X. & Han, X.: Preliminary Study of Diffusion of nitrogen nutrient in fertilizer through polymer membrane, Fertilizer Industry 43, 4-8(2016). DOI: 10.3969/j.issn.1006-7779.2016.05.002.
  • 16. Ramondo, F., Bencivenni, L., Caminiti, R., Pieretti, A. & Gontrani, L.: Dimerisation of urea in water solution: a quantum mechanical investigation. Phys. Chemis. Chem. Physics Pccp 9(18), 2206-2215 (2007). DOI: 10.1063/b617837e .
  • 17. Islam, S. & Waris, B.N.: Intermolecular/interionic interactions in leucine-, NaCl-, and KCl-aqueous urea systems. Thermochimica Acta 424(1), 165-174 (2004). DOI: 10.1016/j.tca.2004.05.016.
  • 18. Grdadolnik, J. & Maréchal, Y.: Urea and urea-water solutions - an infrared study. J. Molec. Struct. 615(1), 177-189 (2002). DOI: 10.1016/S0022-2860(02)00214-4.
  • 19. Idrissi, A., Gerard, M., Damay, P., Kiselev, M., Puhovsky, Y., Cinar, E., Lagant, P. & Vergoten, G.: The effect of urea on the structure of water: a molecular dynamics simulation. J. Phys. Chem. B. 114(13), 4731 (2010). DOI:.10.1021/jp911939y
  • 20. Bankura, A., Carnevale, V. & Klein, M.L.: Hydration structure of salt solutions from ab initio molecular dynamics. J. Chem. Physics 138(1), 014501 (2013). DOI: 10.1063/1.4772761.
  • 21. Carr, J.K., Buchanan, L.E., Schmidt, J.R., Zanni, M.T. & Skinner, J.L.: Structure and dynamics of wrea/water mixtures investigated by vibrational spectroscopy and molecular dynamics simulation. J. Phys. Chem. B. 117(42), 13291-13300 (2013). DOI: 10.1021/jp4037217.
  • 22. Kruger, K. & Sadowski, G.: Fickian and non-Fickian sorption kinetics of toluene in glassy polystyrene. Macromolecules 38(20), 8408-8417 (2005). DOI: 10.1021/ma050353o.
  • 23. And, M.S. & Petropoulos, J.H.: Systematic analysis and model interpretation of micromolecular non-Fickian sorption kinetics in polymer films. Chem. Engineer. J. 82(s 1-3), 183-188 (2001). DOI: 10.1021/ma981255o.
  • 24. Arik Kibar, E.A., Us, F.: Starch-cellulose ether films: Microstructure and water resistance. J. Food Process Engineer. 40(2), e12382 (2017). DOI: 10.1111/jfpe.12382.
  • 25. Wang, K., Lu, G., Zhou, G., Yang, H. & Su, D.: Molecular dynamics study on microstructure of potassium dihydrogen phosphates solution. Chinese J. Chem. Physics 23(2), 160-164 (2010). DOI: 10.1088/1674-0068/23/02/160-164 .
  • 26. Sun, C., Xu, D. & Xue, D.: In situ FTIR-ATR observation of structural dynamics of H2PO4â’ in precrystallisation solution. Mater. Res. Innovations 18(5), 370-375 (2014). DOI: 10.1179/1433075X13Y.0000000155.
  • 27. Palecz, B., Grala, A. & Kudzin, Z.: Calorimetric studies of the interactions between several aminophosphonic acids and urea in aqueous solutions at 298.15 K. J. Chem. & Engineer. Data 59(59), 426-432 (2014). DOI:10.1021/je400900h.
  • 28. Srivastava, T., Pandey, A., Sethi, R., Haroon, S., Pandey, J.D. & Misra, K.: Interaction of uracil and uridine with the cosolvent and denaturant aqueous urea at molecular level: Effect of Na + , K + and Ca ++ Ions. Proceedings of the National Acad. Sci. India 82(3), 179-186 (2012). DOI: 10.1007/s40010-012-0017-9.
  • 29. Sadeghi, M., Held, C., Samieenasab, A., Ghotbi, C., Abdekhodaie, M.J., Taghikhani, V. & Sadowski, G.: Thermodynamic properties of aqueous salt containing urea solutions. Fluid Phase Equilibria 325(325), 71-79 (2012). DOI: 10.1016/j. fluid.2012.04.003.
  • 30. Marcus, Y.: Electrostriction in electrolyte solutions. Chemical Reviews 111(4), 2761-2783 (2011). DOI: 10.1021/ cr100130d.
  • 31. Parmar, M.L. & Attri, S.C.: A comparative study of partial molar volumes of some common, tetra-alkyl ammonium and multivalent electrolytes in aqueous and binary aqueous solutions of urea. J. Molec. Liquids 136(1), 38-43 (2007). DOI: 10.1016/j.molliq.2007.01.004.
  • 32. Shaviv, Avi, A. Smadar Raban & Zaidel, E. “Modeling controlled nutrient release from polymer coated fertilizers: Diffusion release from single granules. Environ. Sci. & Technol. 37(10), 2251-2256 (2003). DOI: 10.1021/es011462v.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-810db7f6-9e32-4893-85b6-9d728a9d3799
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.