PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Block-structured models composed of nonlinear fuzzy dynamic and static parts : a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper addresses issues of the dynamic fuzzy Takagi- Sugeno models identification for multi-step ahead prediction. In the case of highly nonlinear models, standard Takagi-Sugeno models may be hard to identify if they should be designed for recurrent prediction generation. In such a case, alternative fuzzy block-structured models composed of fuzzy dynamic and fuzzy static parts may be useful. Two main benefits of the proposed models are: (1) possibility to speed-up model tuning procedure, (2) potential to fine-tune an already available, standard Takagi-Sugeno model. The benefits offered by the proposed models are illustrated using the example of identification of a nonlinear process – a system consisting of two tanks of different shapes (cylindrical and conical ones).
Twórcy
autor
  • Research and Academic Computer Network (NASK), Kolska 12, 01-045 Warsaw, Poland
autor
  • Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
  • [1] J. Abonyi, R. Babuska, “Local and global identification and interpretation of parameters in TS fuzzy fuzzy models”, IEEE International Conference n Fuzzy Systems,vol. 2, 2000, 835–840. DOI: 10.1109/FUZZY.2000.839140.
  • [2] H.H.J. Bloemen, C.T. Chou, T.J.J. Van den Boom,V. Verdult, M. Verhaegen, T.C. Backx, “Wiener model identification and predictive control for dual composition control of a distillation column”, Journal of Process Control, vol. 11, issue 6, 2001, 601–620. DOI: 10.1016/S0959-1524(00)00056-1.
  • [3] R. Isermann, M. Münchhof, “Identification of Dynamic Systems”, 2011 Springer-Verlag. DOI: 10.1007/978-3-540-78879-9.
  • [4] A. Janczak, “Identification of Nonlinear Systems Using Neural Networks and Polynomial Models”, 2005 Springer-Verlag. DOI: 10.1007/b98334.
  • [5] Jang, J.-S.R., “ANFIS: adaptive-network-based fuzzy inference system”, IEEE Transactions on Systems, Man and Cybernetics,23 (3) 1993, 665–685, DOI: 10.1109/21.256541.
  • [6] T.A. Johansen, R. Babuska, “Multiobjective Identification of TS fuzzy Fuzzy Models”, IEEE Transactions on Fuzzy Systems, vol.11, issue 6, December 2003, 847–860. DOI: 10.1109/TFUZZ.2003.819824.
  • [7] T.A. Johansen, R. Shorten, R. Murray-Smith, “On the interpretation and identification of dynamic TS fuzzy fuzzy models”, IEEE Transactions on Fuzzy Systems, vol. 8, issue 3, June 2000, 297–313. DOI: 10.1109/91.855918.
  • [8] L. Ljung, System Identification: Theory for the User, 1999 Prentice Hall PTR Englewoods Cliffs, New Jersey.
  • [9] P. Marusak, “Efficient MPC algorithms based on fuzzy Wiener models and advanced methods of prediction generation”, Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol. 7267, 2012, 292–300. DOI: 10.1007/978-3-642-29347-4_34.
  • [10] S.J. Norquay, A. Palazoglu, J.A. Romagnoli, “Model predictive control based on Wiener models”, Chemical Engineering Science, vol. 53, issue 1, 1998, 75–84, DOI: 10.1016/S0009-2509(97)00195-4.
  • [11] K. Patan, Artificial neural networks for the modelling and fault diagnosis of technical processes, 2008 Springer-Verlag Berlin Heidelberg
  • [12] A. Piegat, “Fuzzy Modeling and Control”, 2001 Physica-Verlag Heidelberg.
  • [13] G. Shafiee, M.M. Arefi, M.R. Jahed-Motlagh, A.A. Jalali, “Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model”, Chemical Engineering Journal, vol. 143, issue 1–3, 2008, 282–292. DOI:10.1016/j.cej.2008.05.013.
  • [14] T. Takagi, M. Sugeno, “Fuzzy identification of systems and its applications to modelling and control”, Transactions on Systems, Man and Cybernetics, vol. 15(1), 1985, 116–132, DOI: 10.1109/TSMC.1985.6313399.
  • [15] P. Tatjewski, Advanced control of industrial processes: structures and algorithms, 2007, Springer--Verlag London. DOI: 10.1007/978-1-84628-635-3.
  • [16] A. Hagenblad, L. Ljung, A. Wills, “Maximum Likelihood Identification of Wiener Models”, Automatica, 44, 2008, 2697–2705, DOI: 10.1016/j.automatica.2008.02.016.
  • [17] L. Vanbeylen, R. Pintelon, J. Schoukens, “Blind Maximum-Likelihood Identification of Wiener Systems”, IEEE Transactions on Signal Processing, vol. 57, 2009, 3017 – 3029.
  • [18] F. Giri, Er-Wei Bai (Eds), “Block-oriented Nonlinear System Identification”, Lecture Notes In Control And Information Sciences, 2010, Springer--Verlag Berlin.
  • [19] A. Van Mulders, L. Vanbeylen, K. Usevich, “Identification of a block-structured model with several sources of nonlinearity”, Control Conference (ECC), 2014, IEEE.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80fd87af-a6b4-46a2-9f8d-12e5772cf526
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.