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Abstract:
The paper addresses issues of the dynamic fuzzy Takagi-
Sugeno models identification for multi-step ahead pre-
diction. In the case of highly nonlinear models, standard 
Takagi-Sugeno models may be hard to identify if they 
should be designed for recurrent prediction generation. 
In such a case, alternative fuzzy block-structured models 
composed of fuzzy dynamic and fuzzy static parts may 
be useful. Two main benefits of the proposed models 
are: (1) possibility to speed-up model tuning procedure, 
(2) potential to fine-tune an already available, standard 
Takagi-Sugeno model. The benefits offered by the pro-
posed models are illustrated using the example of iden-
tification of a nonlinear process – a system consisting 
of two tanks of different shapes (cylindrical and conical 
ones). 

Keywords: block-structured models, Takagi-Sugeno 
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1. Introduction 
Identification of dynamic systems is an important 

task, as it is crucial in many applications and fields of 
knowledge, including process control, robotics and 
economy [3]. Some processes can be efficiently mod-
eled with linear models using Least Squares Meth-
od for identification [8]. However, linear dynamic 
models applied to the real systems tend to be often 
inaccurate, due to the nonlinear character of the pro-
cesses. Tuning of such models is even more difficult 
in the case of multi-step ahead prediction. In order 
to improve modeling accuracy, nonlinear models can 
be used. Most popular nonlinear models are based 
on polynomials [4], neural networks [11] and fuzzy 
logic [12]. 

An example of the nonlinear dynamic model is 
a model based on fuzzy Takagi-Sugeno (TS) fuzzy 
system [14]. This model is based on fuzzy member-
ship functions and local linear models. Identification 
of these models is not an easy task, especially in the 
case of multi-step ahead prediction [7]. There are sev-
eral identification methods strictly designed for these 
models, like ANFIS (Adaptive Neuro-Fuzzy Inference 
System) [5]. This method determines the shape of 
fuzzy membership functions in the first place. Then, 
it solves quadratic programming problem in order to 
identify parameters of linear local models. The main 
disadvantage of this method is a high likelihood of 

failure, when multi-step ahead models are taken into 
consideration. 

Methods of identification of TS models can be di-
vided into global and local approaches [1]. The global 
approach generates highly accurate global models, 
but local models are not proper linearizations of the 
process in selected steady-state points. In the case of 
the local approach, the local models are in fact lineari-
zations of the process in several steady-state points, 
on the other hand, global output of such a model may 
be not satisfactory. In order to overcome this issue, 
multi-objective identification methods have been 
introduced [6]. Despite many attempts towards cre-
ation of a universal and highly effective Takagi-Sug-
eno identification method, none of them gives a sat-
isfactory result good enough in the case of multi-step 
ahead prediction for any plant. Thus, in the case of 
many processes, individually adapted identification 
procedures should be used.

Another example of a nonlinear model is the Wie-
ner model, which consists of a linear dynamic block 
preceding a nonlinear static model [4]. Thus, the Wie-
ner model is a composition of two different models. 
For example, linear dynamic part can be modeled as 
the ARX model and nonlinear static part can be pro-
vided as the TS fuzzy model. Such a structure can be 
efficiently used in Model Predictive Control (MPC) 
algorithms [10, 15]. In [2, 13] a Wiener model has 
been used to model a polymerization reactor and 
a distillation column respectively. In [9] an example 
of a fuzzy Wiener model has been given. Then, it has 
been shown that this model can be efficiently used in 
the MPC algorithms. These model belongs to the class 
of nonlinear block-oriented models. In general, sever-
al advantages of these models can be highlighted: low 
cost in identification, low computational complexity, 
possibility to approximate nearly all systems (with 
some exceptions) and block-oriented structure itself, 
which can be useful in for example control algorithms.

Both: Wiener and TS models have some draw-
backs. Wiener models (especially tuned with tradi-
tional approach) are inefficient in the case of pro-
cesses with highly nonlinear dynamics, because its 
dynamic part is linear, although other block-oriented 
nonlinear models can be successfully used iniden-
tification of systems with nonlinear dynamics [18]. 
Moreover, new methods can be used to improve Wie-
ner model tuning e.g. Maximum Likelihood methods 
[16, 17]. These methods can be used for the reduction 
of problems concerning bias. On the other hand, well-
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As Takagi-Sugeno model consists of many linear 
models, output of the dynamic part of the block-struc-
tured model can be expressed as the normalized 
weighted sum of outputs of linear dynamic models:

=
∑

∑
 (1)

where l is the number of rules, wi is firing strength 
(weighting factor) of the i-thrule and y klin

i ( )  is the 
output of the i-thlocal dynamic model given by:
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ja  and i

jb  are parameters of the dynamic mod-
el, na and nb define model dynamics,  denotes delay, c 
denotes constant value, is the output of the linear dy-
namic block in the k–m-th sampling instant, u(k – m) 
is the input of the model in the k–m-th sampling in-
stant. Output of the dynamic TS model is then used as 
an input to the static part described by:
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where ls is the number of fuzzy rules in the static part 
of the model, µis(·)is a membership function in the is-

th rule of the fuzzy TS static model, and ����, ����are 
parameters of linear models in the consequents of the 

fuzzy TS static model (i.e. parameters of the local 
models). It is worth to notice that consequents of the 

rules can be assumed constant. Then the model 
simplifies to: 
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After substituting (1) into (3), the proposed block 
structured model can be formulated as follows: 
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The main motivation for developing the block-
structured models was improvement of roughly 
identified dynamic TS models by extending a model 
using low number of additional parameters. Wiener 
models have linear dynamic part, thus they may not 
be suitable for processes with highly nonlinear 
dynamics. Fuzzy TS models are universal 
approximators. However, in the case of fuzzy models, 
increase of parameters leads to the curse of 
dimensionality (though in the TS models it is, 
however, not as disruptive as in the case of Mamdani 
models). Moreover, TS models are often hard to 
identify in the case of models with recurrent 
prediction (multi-step ahead prediction). 
2. Example control plant 

Example identification of the block-structured model 
has been performed for the system consisting of two 

tanks of different shapes (cylindrical and conical ones, 
Fig. 2). Such a process can be described by the 

following set of equations: 
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where h1and h2denote liquid levels in tanks 1 and 2 
respectively, F1indenotes input flow to the first tank, 

F2denotes input flow to the second tank, F3 stands for 
output flow of the whole system and FD stands for the 
disturbance flow. V1and V2denote volumes of liquid in 

tank 1 and 2, respectively. Values of the process 
parameters are: A2 = 300 cm2, C1= 0.75 , α1 = 15.9 , α2 

= 20, delay τ=40s. 

 

 
Fig. 2. System of two tanks 

 

In Single Input Single Output (SISO) case, first flow 
F1is considered to be an input of the system. Output of 

the system is liquid level in the second tank, h2. The 
process can be also treated as a MISO plant with 

disturbance input flow FD taken into account. In order 
to calculate output value directly from the differential 

equations, equations (6) can be transformed into: 
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where ls is the number of fuzzy rules in the static 
part of the model, is(·) is a membership function in 
the is-th rule of the fuzzy TS static model, and ais0 , a
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The main motivation for developing the block-struc-
tured models was improvement of roughly identified 
dynamic TS models by extending a model using low 
number of additional parameters. Wiener models 
have linear dynamic part, thus they may not be suit-
able for processes with highly nonlinear dynamics. 
Fuzzy TS models are universal approximators. How-
ever, in the case of fuzzy models, increase of param-
eters leads to the curse of dimensionality (though in 
the TS models it is, however, not as disruptive as in 
the case of Mamdani models). Moreover, TS models 
are often hard to identify in the case of models with 
recurrent prediction (multi-step ahead prediction).

tuned TS model can be efficient for nearly all process-
es. However, these models may be very hard to iden-
tify in the case of models designed for a multi-step 
ahead prediction. Moreover, identification of fuzzy 
models often requires more heuristic approaches. It 
impedes procedure of model tuning and is strongly 
connected with the fact that often different heuristics 
have to be used for different problems. Despite these 
issues, TS models are still considered as useful in con-
trol engineering, because: (1) they are similar to line-
ar models, so can be easily used in control algorithms, 
(2) they are considered as universal approximators 
and (3) TS model structure enables tuning of its indi-
vidual elements (e.g. individual linear models). 

In this paper, advantages of both block-structured 
and fuzzy models have been merged. The goal of this 
paper is to provide simple yet effective method for 
the improvement of Takagi-Sugeno model identifi-
cation. Fuzzy block-structured models composed of 
a nonlinear dynamic part and of a nonlinear static 
part have been presented. Theyare combination of 
the two aforementioned models. In comparison to the 
Wiener model or the TS model, the block-structured 
model can be identified easier. It can be also used to 
improve quality of a roughly tuned TS fuzzy model. As 
there are many effective methods for identification of 
block-oriented models for strongly nonlinear systems 
[18, 19], their structure was used for improvement 
of TS models. Main goal of this paper is to show that 
advantages of the block-oriented models can be suc-
cessfully used during facilitation of identification of 
other models.

In chapter 2, the block-structured model and its 
advantages are described. Chapter 3 contains de-
scription of an example process. In chapter 4, appli-
cations of ARX, Wiener and TS models to modeling 
of the example process are presented. All described 
models have been compared using Mean Square Error 
(MSE).Chapter 5 contains description of application 
of the proposed block-structured model. Additionally, 
advantages of block-structured models highlighted in 
chapter 2 are demonstrated. Finally, chapter 6 con-
cludes the paper. 

2. Block-Structured Models
The proposed block-structured models have been 

inspired by the Wiener models. They are composed of 
nonlinear models; see fig. 1. Both dynamic and static 
parts of the proposed model can be expressed as any 
nonlinear model (e.g. fuzzy TS models, multilayer per-
ceptron neural models or polynomials). This work is 
focused on block-structured models composed of TS 
fuzzy dynamics and TS fuzzy statics.

Both: Wiener and TS models have some drawbacks. 
Wiener models (especially tuned with traditional 

approach) are inefficient in the case of processes with 
highly nonlinear dynamics, because its dynamic part 
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where ls is the number of fuzzy rules in the static part 
of the model, µis(·)is a membership function in the is-

th rule of the fuzzy TS static model, and ����, ����are 
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The main motivation for developing the block-
structured models was improvement of roughly 
identified dynamic TS models by extending a model 
using low number of additional parameters. Wiener 
models have linear dynamic part, thus they may not 
be suitable for processes with highly nonlinear 
dynamics. Fuzzy TS models are universal 
approximators. However, in the case of fuzzy models, 
increase of parameters leads to the curse of 
dimensionality (though in the TS models it is, 
however, not as disruptive as in the case of Mamdani 
models). Moreover, TS models are often hard to 
identify in the case of models with recurrent 
prediction (multi-step ahead prediction). 
2. Example control plant 

Example identification of the block-structured model 
has been performed for the system consisting of two 

tanks of different shapes (cylindrical and conical ones, 
Fig. 2). Such a process can be described by the 

following set of equations: 
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One should notice that FDis not delayed. Thestatic 
characteristics of the control plant, and of the model 
linearized in the steady-state point h2= 8.41 cmand F 
= 51 cm3/sare presented in Fig. 3 (disturbance flow 
FDwas assumed constant and equal to 7 cm3/s). Step 
responses of the nonlinear model are compared with 

the ones of the linearized model in Fig. 4. 

 

 
Fig. 3. Static characteristic of the process 

 

 
Fig. 4. Control plant dynamics 

 

Observing Figs. 3 and 4 it is clear that the example 
process has both: nonlinear statics and nonlinear 

dynamics. During the experiments the input value F 
waschangedto the following values:20, 30, 40, 51, 60, 

70, 80 cm3/s. It can be noticed that the bigger 
difference between actual input and the input at the 
steady-state point is, the bigger difference between 
responses of the linear and nonlinear models can be 

observed.  

 
3. Application of Linear, Wiener and Takagi-

Sugeno models 

This chapter presents application of linear, Wiener 
and TS models to the example plant. Some 

assumptions concerning model identification have 
been done: 

Control plant has been identified within input range F 
∈<0,80>cm3/s. 

During identification, control plant is considered to be 
a SISO process, with input flow F and liquid level h2 

being the output. 

Only recurrent models with multi-step ahead 
predictions are considered. 

As the considered control plant is slow, sampling 
period is equal to T = 10s. 

Disturbance flow FD was constant and equal to 7 
cm3/s. 

 

All of the models are compared with the ideal 
nonlinear model, received from the equations (6). 

Models have been evaluated and compared using the 
Mean Square Error (MSE) 
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where yr(k) and y(k) denote output values of the 
original model (6) in the discrete sample k and of an 

identified model, respectively.  
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Only recurrent models with multi-step ahead pre-
dictions are considered.

As the considered control plant is slow, sampling 
period is equal to T = 10 s.

Disturbance flow FD was constant and equal to 
7 cm3/s.

All of the models are compared with the ideal non-
linear model, received from the equations (6). Models 
have been evaluated and compared using the Mean 
Square Error (MSE)
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Fig. 5. Test of linear model 

 

The linear model has been verified on the test data set 
obtained using the original equations (6); see Fig. 5. 

The linear model fails to imitate both statics and 
dynamics of the tanks at the satisfactory level. 

Imperfections in statics can be mostly seen at the 
lower range of input values. For the low values of the 
flow F, liquid level h2 is negative. Bad representation 

of dynamics can be observed especially for the higher 
range of input values, where linear model achieves 
the steady state too quickly. The test shows that the 

linear model is not accurate enough and identification 
of the nonlinear process model should be done. 

 
4.2 Application of a Wiener Model 

The first simple and natural step towards improving 
the linear model (9) is to extend it with a nonlinear 

static part. Such an approach will lead to obtaining the 
Wiener model, with linear dynamics preceding 

nonlinear statics, which is given by: 
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where µi(·) denote the generalized Gaussian membership 
functions and ylin(k) denotes output of the linear dynamic 
model (9), the values of the parameters are as follows:  
c1=–3.674, c2=7.969, σ1=18.61, σ2=14.44, ���=35.65,  
���=–36.17, ���=0.7923, ���=2.053. The fuzzy, static part 
of the model has been identified using Adaptive Neuro-
Fuzzy Inference System (ANFIS) MATLAB tool. 
Nonlinear static part consists of two fuzzy rules, because 
bigger number of rules has not improved the model 
significantly. The test of the Wiener model using the test 
data set is presented in Fig. 6. 
 

 
Fig. 6. Test of the Wiener model 

 
Although the Wiener model performs much better than 
linear model (6), it is still not perfect enough. It can be 
noticed that at the higher range of input flow the Wiener 
model not only achieves steady-state values too fast, but 
there is also a considerable deviation between steady-
state values. 
 
4.3 Application of a Takagi-Sugeno Model 

In the case of the example plant, identification of a TS 
fuzzy model working in a satisfactory way with multi-

step ahead prediction is not easy. The aim was to 
identify a model, which would be able to properly 

predict output h2in the whole range of inputs, with as 
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Although the Wiener model performs much better 
than linear model (6), it is still not perfect enough. It 
can be noticed that at the higher range of input flow 
the Wiener model not only achieves steady-state val-
ues too fast, but there is also a considerable deviation 
between steady-state values.

4.3 Application of a Takagi-Sugeno Model
In the case of the example plant, identification of 

a TS fuzzy model working in a satisfactory way with 
multi-step ahead prediction is not easy. The aim was 
to identify a model, which would be able to proper-
ly predict output h2in the whole range of inputs, with 
as low number of parameters (and of fuzzy rules) 
as possible. First of all, standard identification tools 
like ANFIS are not able to identify a stable recurrent 
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model for the considered system of tanks. In order to 
identify a properly working model, a lot of optimiza-
tion procedure calls have been performed. After many 
experiments, the following model consisting of three 
local linear models and three membership functions 
has been identified

low number of parameters (and of fuzzy rules) as 
possible. First of all, standard identification tools like 

ANFIS are not able to identify a stable recurrent 
model for the considered system of tanks. In order to 

identify a properly working model, a lot of 
optimization procedure calls have been performed. 

After many experiments, the following model 
consisting of three local linear models and three 

membership functions has been identified 
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Parameters of Takagi-Sugeno model are presented in 
Table 1. In this particular case, µi(·) are the 

generalized bell membership functions. Results of the 
test of the fuzzy model are presented in Fig. 7. 

 
Table 1. Parameters of Takagi-Sugeno model 

��� = −2.99269755 ��� = 3.09986829 ��� = −1.10786562 

��� = −0.00265196 ��� = 0.00097673 ��� = 0.00144840 

��� = 0.02325236 ��� = −2.07214459 ��� = 1.40937893 

��� = −0.31914971 ��� = 0.00743793 ��� = −0.00209157 

��� = −0.00149540 ��� = −0.05903962 ��� = −0.49863498 

��� = −1.35260971 ��� = 0.85935076 ��� = 0.02694692 

��� = −0.02428196 ��� = −0.00135914 ��� = 0.03383882 

��� = 2.38310951 ��� = 1.20259040 ��� = 9.65702467 

��� = 3.71510776 ��� = 2.18542619 ��� = 7.20816195 

��� = 0.08657941 ��� = 0.50682709 ��� = −0.92594015 

 

 
Fig. 7. Test of the Takagi-Sugeno model 

 

The TS fuzzy model is very well tuned. Some 
imperfections can be noticed only in the magnified 
plot. However, the differences are very small and 

typical for such identification tasks. In comparison to 
the Wiener model, the MSE coefficient is of order of 

magnitude better. One should note that procedure of 
TS model identification was very time-consuming, 

especially in comparison to the rapid identification of 
Wiener model. Moreover, TS model required heuristic 

approach, which was strictly defined for the 
presented system of tanks. As the heuristic approach 

was used, it is hard to strictly define convergence rate. 
However, TS model identification time was 

significantly longer than in case of Wiener model, 
where strict mathematical rules can be used for 

system identification. The goal of the proposed fuzzy 
block-structured models presented in the next 
chapter is to connect their structure with fuzzy 

approach, in order to significantly improve procedure 
of fuzzy models identification. 
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Wiener model. Moreover, TS model required heuristic 

approach, which was strictly defined for the 
presented system of tanks. As the heuristic approach 

was used, it is hard to strictly define convergence rate. 
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significantly longer than in case of Wiener model, 
where strict mathematical rules can be used for 

system identification. The goal of the proposed fuzzy 
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chapter is to connect their structure with fuzzy 
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Results of the test of the model are presented in Fig. 8. 
The obtained model is very well tuned and almost 

perfectly mimics the original equations (6). 
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The proposed block-structured model has slightly 
improved already identified Takagi-Sugeno model. It 

can be observed after comparing the magnified 
fragments of Figs. 7 and 8 that modeling at the higher 

values of level h2has been improved. Difference in 
values of the MSE coefficient is equal to ΔE/n=0.0005. 
Such a small difference could have been foreseen, as 
TS fuzzy model has been already very accurate and 

well-tuned.   

In comparison to the Wiener model, the block-
structured model is about 11 times better (comparing 

the MSE). Still, the block-structured model has 
Wiener-specific structure, what can be beneficial in 

the case of some special applications (like predictive 
control cooperating with the set-point optimization). 
The tests confirm that the block-structured models 

can offer better performance comparing to the 
Wiener models). 

5.2 Improvement of roughly tuned Takagi-
Sugeno models 

 

One of the benefits gained from using block-
structured models is possibility to improve already 
existing TS fuzzy models. Comparing results from 
subsection 4.3 and section 5, it is hard to clearly 

confirm such an advantage. However, two factors 
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Firstly, TS fuzzy model has already been very well 
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Secondly, it was mentioned that TS fuzzy model for 
the proposed plant has been hard to identify. It 

required hundreds of optimization procedure calls 
(Sequential Quadratic Programming, Active-set and 

Genetic Algorithm optimization methods) and 
considerable computational effort. Thus, the 

identification process is very time-consuming. 

 

TS fuzzy models can be especially hard to identify in 
the case of models with multi-step ahead prediction. 

When one-step ahead prediction is considered, 
standard tools and methods, like ANFIS, are usually 
sufficient. It is because they are adjusted to the non-

recurrent problems. This is due to the objective 
function, which consists of already defined 

membership functions (treated as constants in the 
latter optimization steps) and linear consequents of 

TS fuzzy model. Such an approach leads to the 
quadratic programming problem (a convex function). 
In multi-step ahead prediction, membership functions 

cannot be treated as constants, what leads to the 
nonlinear optimization problem.  

(12)

where c5 = −2.103, 5 = 1.818, c6 = 19.59, 6 = 3.257,  
a
1

5

 = 0.9964, a
0

5  = −0.002777, a
1

6  = 0.9908, 
a
0

6  = 0.1114. Results of the test of the model are 
presented in Fig. 8. The obtained model is very well 
tuned and almost perfectly mimics the original equa-
tions (6).
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improved already identified Takagi-Sugeno model. It 
can be observed after comparing the magnified frag-
ments of Figs. 7 and 8 that modeling at the higher val-
ues of level h2 has been improved. Difference in val-
ues of the MSE coefficient is equal to ΔE/n = 0.0005. 
Such a small difference could have been foreseen, as 
TS fuzzy model has been already very accurate and 
well-tuned. 

In comparison to the Wiener model, the 
block-structured model is about 11 times better (com-
paring the MSE). Still, the block-structured model has 
Wiener-specific structure, what can be beneficial in 
the case of some special applications (like predictive 
control cooperating with the set-point optimization). 
The tests confirm that the block-structured models 
can offer better performance comparing to the Wie-
ner models).

5.2. Improvement of roughly tuned  
Takagi-Sugeno models

One of the benefits gained from using block-struc-
tured models is possibility to improve already existing 
TS fuzzy models. Comparing results from subsection 
4.3 and section 5, it is hard to clearly confirm such an 
advantage. However, two factors should be taken into 
consideration:

Firstly, TS fuzzy model has already been very well 
tuned.

Secondly, it was mentioned that TS fuzzy model 
for the proposed plant has been hard to identify. It 
required hundreds of optimization procedure calls 
(Sequential Quadratic Programming, Active-set and 
Genetic Algorithm optimization methods) and con-
siderable computational effort. Thus, the identifica-
tion process is very time-consuming.

TS fuzzy models can be especially hard to identify 
in the case of models with multi-step ahead predic-
tion. When one-step ahead prediction is considered, 
standard tools and methods, like ANFIS, are usu-
ally sufficient. It is because they are adjusted to the 

non-recurrent problems. This is due to the objective 
function, which consists of already defined member-
ship functions (treated as constants in the latter op-
timization steps) and linear consequents of TS fuzzy 
model. Such an approach leads to the quadratic pro-
gramming problem (a convex function). In multi-step 
ahead prediction, membership functions cannot be 
treated as constants, what leads to the nonlinear opti-
mization problem. 

In the case of the process under consideration, 
ANFIS was unable to determine a stable model for the 
system of two tanks. An approach tailored to the given 
problem was required.

In such cases, block-structured models can be 
found useful. When fine-tuning of a TS fuzzy model is 
too hard, it can be stopped and current best model can 
be improved by adding a nonlinear static part. Such 
an approach can considerably improve performance 
of the fuzzy model, without significant increase of 
computation complexity.

Now, a TS fuzzy model obtained during the identi-
fication procedure of the fine-tuned model presented 
in subsection 4.3 will be improved using the proposed 
approach.

Fig. 9 The first roughly tuned TS fuzzy model

The model was obtained pretty fast, but the value 
of the MSE coefficient (E/n=0.1544) is better than in 
the case of the Wiener model, though visually Wiener 
model test looks better (compare Figs. 6 and 9). It is 
caused by the better adjustment of control plant dy-
namics in the TS fuzzy model, which greatly impacts 
the MSE coefficient. The Wiener model is in fact bet-
ter only in prediction of process statics. Improvement 
has been done by identifying the nonlinear static part 
using ANFIS tool. Several variants of the static part 
have been tested: with linear or constant consequents 
and 2, 3 or 4 Gaussian membership functions. The ob-
tained results are presented in Table 2.

The initially not too well tuned TS fuzzy mod-
el has been improved almost 4 times. In the case of 
linear consequents of the fuzzy model, two member-
ship functions are sufficient to significantly improve 
TS fuzzy model. In the case of constant consequents 
three membership functions are sufficient to provide 
similar quality of the model, as in the case of the mod-
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el with linear consequents. Selection of constant con-
sequents may be useful in the case, when computa-
tion time matters. Test of the block-structured model 
with 2 membership functions and linear consequents 
in the static part is presented in Fig. 10.

Table 2. Improvement of first TS fuzzy model

 conseq.
 type 

num.
of mem.
functions

linear constant

2
E
n  

= 0.044
E
n  

= 0.054

3
E
n  

= 0.043
E
n  

= 0.045

4
E
n  

= 0.043
E
n  

= 0.044

Fig. 10 The first roughly tuned TS fuzzy model followed 
by the nonlinear fuzzy static part

The second roughly tuned TS fuzzy model is even 
worse than the first one. Test of this model is pre-
sented in Fig. 11. The MSE coefficient of this model is 
equal E/n=0.888.

Fig. 11. The second roughly tuned TS fuzzy model

Similar tests have been performed as in the case 
of the first roughly tuned TS fuzzy model. The stat-
ic part has been also identified by using the ANFIS 
tool. Gaussian membership functions have been se-
lected. Table 3 presents results of tests of different 
block-structured models based on the above men-
tioned TS fuzzy model.

Table 3. Improvement of second TS fuzzy model

 conseq.
 type 

num.
of mem.
functions

linear constant

2
E
n  

= 0.206
E
n  

= 0.238

3
E
n  

= 0.203
E
n  

= 0.207

4
E
n  

= 0.203
E
n  

= 0.205

Like in the previous case, the static model with 
2 Gaussian membership functions and linear conse-
quents was enough to significantly improve TS fuzzy 
model. The model with constant consequents needed 
3 Gaussian membership functions in order to achieve 
quality similar to the one offered by the model with 
linear consequents. Test of the model with 2 linear 
consequents in the static part of the model is present-
ed in Fig. 12.

Fig. 12. The second roughly tuned TS fuzzy model 
followed by the nonlinear fuzzy static part

In the considered example, the block-structured 
model is about 4.5 times better than the initial TS 
fuzzy model. Using ANFIS tool, identification of the 
nonlinear static model is almost instant, therefore the 
identification procedure of the model is much faster 
and effortless than in the case of the TS fuzzy model 
described in Sect. 4.3. One should notice that usage of 
different identification techniques for static part may 
provide even better model.
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To sum up, this subsection proves that a roughly 
tuned TS fuzzy model can be significantly improved 
by adding and identifying a nonlinear static block, 
input of which is an output of the nonlinear dynam-
ic model. In the case of a highly nonlinear processes, 
and multi-step ahead prediction, such an approach 
may turn out to be very useful.

5.3. Disturbance Modeling in Block-Structured Models
So far, only SISO models have been considered. 

However, liquid level h2 depends not only on the in-
put flow F, but also on the disturbance flow FD. Tak-
ing the flow FD intoconsideration as one of the system 
inputs, leads to the MISO model. In the current work, 
disturbance FD has been changed in the range from 0 
to 15 cm3/s. The static characteristic of the plant con-
sidered as a MISO system is presented in Fig. 13.

Fig. 13. Static characteristic of the process with two 
input flows: F and FD

In block-structured models the additional distur-
bance input can be included in different ways. Two 
approaches to MISO modeling have been thus inves-
tigated. In the first of them, a simplified one, it is as-
sumed that the disturbance is taken into considera-
tion only in the nonlinear static part of the model. The 
structure of the model in this approach is presented 
in Fig. 14. 
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Parameters of the model are presented in Table 4. It is 
worth to notice that the disturbance FD is not fuzzified 
and it is present only in the consequents of the static 

TS fuzzy model. 
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The second approach to obtain a MISO block-
structured model is more complex. The model 

contains a couple of nonlinear dynamic models. The 
structure of this MISO model is presented in Fig. 15. 
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Parameters of the model are presented in Table 4. 
It is worth to notice that the disturbance FD is not fuz-
zified and it is present only in the consequents of the 
static TS fuzzy model.

Table 4. Parameters of block-structured model with 
disturbance included in the static part

c5 = 0.09089 5 = 2.009 c6 = 8.124

6 = 4.001 c7 = 10.26 7 = 1.925

a
2

5

 = 1.067 a
1

5

 = 0.1034 a
0

5

 = –0.7514

a
2

6

 = 1.044 a
1

6

 = 0.3213 a
0

6

 = –2.606

a
2

7

 = 1.061 a
1

7

 = 0.4334 a
0

7

 = –4.206

The second approach to obtain a MISO block-struc-
tured model is more complex. The model contains 
a couple of nonlinear dynamic models. The structure 
of this MISO model is presented in Fig. 15.
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Parameters of the disturbance model are presented in 
Table 5. 
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Parameters of the disturbance model are present-
ed in Table 5.

Table 5. Parameters of the disturbance model

c5 = 6.461 5 = 2.009 c6 = 8.124

6 = 1.458 c7 = 10.26 7 = 1.925

a
1

5

 = –1.09 a
2

5

 = –0.3266 a
3

5

 = 0.4494

b
1

5

 = 0.002509 b
2

5

 = 0.003863 b
3

5

 = 0.00137

a
0

5

 = 0.21 a
1

6

 = –1.226 a
2

6

 = –0.3538

a
3

6

 = 0.5818 b
1

6

 = 0.0001568 b
2

6

 = 0.0003302

b
3

6

 = 0.0002166 a
0

6

 = 0.01735 a
1

7  = –1.229

a
2

7

 = 0.01735 a
3

7

 = 0.01735 b
1

7

 = 0.01735

b
2

7

 = 0.0005275 b
3

7

 = 0.0001986 a
0

7

 = 0.02841

In the model, the nonlinear static part is com-
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Parameters of the nonlinear static part are pre-
sented in Table 6.

Table 6. Parameters of the nonlinear static part in 
block-structured model with disturbance included in 
the dynamic model

c8 = 0.0751 8 = 8.018 c9 = 18.84 9 = 8.073

c10 = 6.724 10 = 2.076 c11 = 11.13 11 = 2.195

a
2

8

 = 0.8044 a
1

8

 = 0.4272 a
0

8

 = –3.234 a
2

9

 = 1.299

a
1

9

 = 0.4489 a
0

9

 = –4.359 a
2

10

 = 0.8786 a
1

10

 = 1.427

a
0

10

 = –9.973 a
2

11

 = 1.164 a1
11

 = 1.13 a
0

11

 = –12.57

Both MISO models have been verified using a test 
data set. This data set is very similar to the one used 
earlier, but now it includes also changes of the dis-
turbance FD. In the case of a simplified approach with 
disturbance considered only in the static part of the 
model, the MSE is equal to E/n = 0.0178. In the case 
of the more complex model with two dynamic parts, 
E/n = 0.0064, thusthe MSE coefficient of the MISO 
model with two dynamic parts is about 2.5 times bet-
ter than in the case of the simplified MISO model.

Fig. 16 presents comparison between two frag-
ments of test data set for both MISO models. In this 
piece of test, changes of disturbance FD occur. It can 
be noticed that the model with disturbances included 
only in the static part has significant problems with 
modeling influence of FD on system dynamics. On the 
contrary, the model with two separate nonlinear dy-
namic models reconstructs dynamic behavior of the 
process appropriately. To sum up, the MISO model 
with two dynamic parts is very accurate and it can be 
used as a multi-step ahead predictor for the consid-
ered control plant.

6. Conclusions
In this paper, block-structured models based on TS 

fuzzy systems have been proposed. The models have 
been tested during modeling of the example process, 
consisting of two tanks (cylindrical and conical ones). 
All models have been designed for multi-step ahead 
prediction. The designed model has been compared 
with other widely used dynamical models, such as lin-
ear ARX, the Wiener model and the standard TS fuzzy 
model. The goal of the method proposed in this paper 
was to merge advantages of block-structured models 
and TS models. Block-structured models can be used 
for rapid identification of many systems, while Taka-
gi-Sugeno models can be used to relatively easy syn-
thesize control algorithms.
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Fig. 16. Comparison of MISO models with one (up) and 
two (bottom) dynamic parts

The tests have shown that drawbacks of the other 
models can be relatively easy reduced by means of the 
proposed block-structured models with the nonlinear 
static model following the TS fuzzy dynamic model. 
Thus, the following benefits of the block-structured 
models (on contrary to Wiener or dynamic TS fuzzy 
models) can be listed:
• Better performance than the one offered by the 

Wiener models, in the case of systems with highly 
nonlinear dynamics;

• Possibility to improve already identified TS fuzzy 
model. This benefit is especially noticeable when 
TS fuzzy model is hard to identify;

• Possibility to significantly shorten identification 
time;

• Possibility to include another input in the model 
without much effort;

• Possibility to identify separate dynamic models for 
different inputs and connect them with a single (or 
multiple) nonlinear static model(s). (Versatility of 
the proposed approach.)
The structure of the proposed models can be eas-

ily used in the Model Predictive Control algorithms 
cooperating with the set-point optimization. Future 
work will concern application of the block-structured 
models in such control algorithms. To sum up, fuzzy 
block-structured models can be a good alternative 
to TS fuzzy models, especially when it is hard to find 

proper heuristic approach for the system identifica-
tion. They can significantly simplify model identifica-
tion procedure without sacrificing quality of mode-
ling. Moreover, their structure can be easily extended 
to the MISO models, if needed.
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