PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reconstruction algorithm for obtaining the bending deformation of the base of heavy-duty machine tool using inverse Finite Element Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The field of mechanical manufacturing is becoming more and more demanding on machining accuracy. It is essential to monitor and compensate the deformation of structural parts of a heavy-duty machine tool. The deformation of the base of a heavy-duty machine tool is an important factor that affects machining accuracy. The base is statically indeterminate and complex in load. It is difficult to reconstruct deformation by traditional methods. A reconstruction algorithm for determining bending deformation of the base of a heavy-duty machine tool using inverse Finite Element Method (iFEM) is presented. The base is equivalent to a multi-span beam which is divided into beam elements with support points as nodes. The deflection polynomial order of each element is analysed. According to the boundary conditions, the deformation compatibility conditions and the strain data measured by Fiber Bragg Grating (FBG), the deflection polynomial coefficients of a beam element are determined. Using the coordinate transformation, the deflection equation of the base is obtained. Both numerical verification and experiment were carried out. The deflection obtained by the reconstruction algorithm using iFEM and the actual deflection measured by laser displacement sensors were compared. The accuracy of the reconstruction algorithm is verified.
Rocznik
Strony
727--741
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Wuhan University of Technology, School of Mechanical and Electrical Engineering, Wuhan 430070, Hubei, China
  • Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, Hubei, China
autor
  • Wuhan University of Technology, School of Mechanical and Electrical Engineering, Wuhan 430070, Hubei, China
  • Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, Hubei, China
autor
  • Wuhan University of Technology, School of Mechanical and Electrical Engineering, Wuhan 430070, Hubei, China
  • Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, Hubei, China
autor
  • Wuhan University of Technology, School of Mechanical and Electrical Engineering, Wuhan 430070, Hubei, China
  • Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, Hubei, China
autor
  • Wuhan University of Technology, School of Mechanical and Electrical Engineering, Wuhan 430070, Hubei, China
  • Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, Hubei, China
Bibliografia
  • [1] Xiong, Y., Wu, J., Deng, C. (2016). Machining process parameters optimization for heavy-duty CNC machine tools in sustainable manufacturing. Int. J. Adv. Manuf. Technol., 87(5-8), 1237-1246.
  • [2] Cui, G.W., Cheng, F.L., Gao, D. (2011). Real-Time Compensation of Ram Thermal Elongation Errors for Heavy-Duty Numerical Control Machine Tool. Advanced Materials Research, 317-319, 1964-1967.
  • [3] Cheng, F.L., Jiang, B., Li, Y. (2012). The Analysis and Evaluation Method of Assembly Accuracy Reliability of Heavy Duty Machine Tool. Advanced Materials Research, 500, 608-613.
  • [4] Jiang, B., Zhao, J.X., Sun, S.Z. (2014). Design Method of Assembly Accuracy Repeatability of Heavy Duty Machine Tool. MATER SCI FORUM, 800-801, 516-520.
  • [5] Lu, Y., Cui, G.W., Gao, D. (2012). Thermal Deformation Finite Element Analysis for the Ram of Heavy-Duty CNC Machine Tools. Advanced Materials Research, 433-440, 7159-7164.
  • [6] Liu, M., Wang, L., Kang, Y. (2016). Study on the deformation measurement and reconstruction of heavy-duty machine column based on FBG sensor. IEEE International Conference on Mechatronics and Automation, IEEE, 1221-1225.
  • [7] Xu, Y., Chan, L.C., Tsien, Y.C. (2008). Prediction of work-hardening coefficient and exponential by adaptive inverse finite element method for tubular material. J. Mater. Process. Tech., 20(1-3), 413-418.
  • [8] Azizi (2009). Different implementations of inverse finite element method in sheet metal forming. Mater. Design., 30(11), 2975-2980.
  • [9] Gherlone, M., Cerracchio, P., Mattone, M.(2012). Shape sensing of 3D frame structures using an inverse Finite Element Method. Int. J. Solids. Struct., 49(22), 3100-12.
  • [10] Tessler, A., Spangler, J.L. (2005). A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells. Comput. Method. Appl. M., 194(2-5), 327-339.
  • [11] Gherlone, M., Cerracchio, P., Mattone, M. (2014). An inverse finite element method for beam shape sensing: theoretical framework and experimental validation. Smart. Mater. Struct., 23(23), 045027.
  • [12] Cerracchio, P., Gherlone, M., Tessler, A. (2015). Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads. Meccanica, 50(13), 2487-2496.
  • [13] Kefal, A., Oterkus, E. (2016). Displacement and stress monitoring of a chemical tanker based on inverse finite element method. Ocean. Eng., 112, 33-46.
  • [14] Kefal, A., Oterkus, E. (2016). Displacement and stress monitoring of a Panamax containership using inverse finite element method. Ocean. Eng., 119, 16-29.
  • [15] Kefal, A., Mayang, J.B„ Oterkus. E. (2018). Three dimensional shape and stress monitoring of bulkcarriers based on iFEM methodology. Ocean. Eng., 147, 256-267.
  • [16] Kefal, A., Oterkus, E., Tessler, A. (2016). A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Eng. Sci. Technol. Int. J., 19(3), 1299-1313.
  • [17] Kefal, A., Tessler, A., Oterkus, E. (2017). An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures. Compos. Struct., 179, 514-540.
  • [18] Kefal, A., Yildiz, M. (2017). Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method. Sensors, 17(15), 2775.
  • [19] Gherlone, M., Cerracchio, P., Mattone, M. (2018). Shape sensing methods: Review and experimental comparison on a wing-shaped plate. Prog. Aerosp. Sci., https://doi.org/10.1016/j.paerosci.2018.04.001.
  • [20] Fang, L., Chen, T., Li, R. (2016). Application of Embedded Fiber Bragg Grating (FBG) Sensors in Monitoring Health to 3D Printing Structures. IEEE Sens. J., 16(20), 6604-10.
  • [21] Papantoniou, A., Rigas, G., Alexopoulos, N.D. (2011). Assessment of the strain monitoring reliability of fiber Bragg grating sensor (FBGs) in advanced composite structures. Compos. Struct., 93(12), 2163-72.
  • [22] Liu, Q., Yan, J., Pham, D.T. (2016). Identification and optimal selection of temperature-sensitive measuring points of thermal error compensation on a heavy-duty machine tool. Int. J. Adv. Manuf. Technol., 85(1-4), 345-53.
  • [23] Zhang, Y., Yang, W. (2016). Simultaneous precision measurement of high temperature and large strain based on twisted FBG considering nonlinearity and uncertainty. Sensor. Actuat. A-Phys., 239, 185-95.
  • [24] Jiang, H., Fan, K.G., Yang, J.G. (2014). An improved method for thermally induced positioning errors measurement, modeling, and compensation. Int. J. Adv. Manuf. Technol., 75, 1279-1289.
  • [25] Miao, E.M., Gong, Y.Y., Dang, L.C., Miao, J.C. (2014). Temperaturesensitive point selection of thermal error model of CNC machining center. Int. J. Adv. Manuf. Technol., 74, 681-691.
  • [26] Liang, R.J., Ye, W.H., Zhang, H.H., Yang, Q.F. (2012). The thermal error optimization models for CNC machine tools. Int. J. Adv. Manuf. Technol., 63, 1167-1176.
  • [27] Kankarani Farahani, M., Bostan, Shirin, M., Assempour, A. (2014). Development of an inverse finite element method with an initial guess of linear unfolding. Finite. Elem. Anal. Des., 79, 1-8.
  • [28] Bostan Shirin, M., Assempour, A. (2014). Some improvements on the unfolding inverse finite element method for simulation of deep drawing process. Int. J. Adv. Manuf. Technol., 72(1-4), 447-56.
  • [29] Cerracchio, P., Gherlone, M., Di Sciuva, M. (2015). A novel approach for displacement and stress monitoring of sandwich structures based on the inverse Finite Element Method. Compos. Struct., 127, 69-76.
  • [30] Du, F., Wang, X., Yao, M. (2014). Analysis of the non-uniform thermal behavior in slab continuous casting mold based on the inverse finite-element model. J. Mater. Process. Tech., 214(14), 2676-2683.
Uwagi
EN
1. This experimental study was supported by the National Natural Science Fund of China (General Program, Grant #51375359), the International Cooperation Project of Hubei (Grant #2015DFA70340) and the Excellent Dissertation Cultivation Funds of Wuhan University of Technology (Grant #2016-YS-030). The authors would like to thank Hubei Digital Manufacturing Key Laboratory (Wuhan University of Technology) for providing the experiment equipment to accomplish the project. The authors also wish to gratefully acknowledge the assistance of Lan Feng, Dong Ai, Yuanming Fang, Wei Chen and Xuemin Zhang in the experiment.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80fa6725-a2c6-42b5-8f84-3360b24bd7cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.