PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zjawiska piezooptyczne i elastooptyczne w fotonicznych kompozytach polimerowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Piezooptic and elastooptic phenomena in photonic polymer composites
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono zwięzłą analizę zarówno numeryczną, jak i eksperymentalną, zjawisk piezooptycznych i elastooptycznych w fotonicznych kompozytach polimerowych. Do analizy wymienionych zjawisk użyto mikrostrukturalnych światłowodów polimerowych, co w bardzo przejrzysty sposób uwidoczniło odkształcenia, jakie pojawiają się w kompozycie polimerowym w momencie laminacji. Eksperyment ten ułatwił w znacznym stopniu analizę numeryczna wpływu jaki wywiera na dowolny światłowód skurcz polimeryzacyjny oraz umożliwił ocenę stopnia wpływu zjawiska elastooptycznego na mikrostrukturalny światłowód polimerowy, a przez to rozróżnienie go od zjawiska piezooptycznego. Przeprowadzona analiza otrzymanych wyników wykazała, że znaczenie ma takie orientacja głównych osi światłowodu względem włókien zbrojenia. W zależności od orientacji światłowodu w fo-tonicznym kompozycie polimerowym, zjawiska piezooptyczne lub elastooptyczne mogą wzmocnić lub osłabić wpływ skurczu polimeryzacyjnego. Dodatkowo istnieje możliwość zmiany charakterystyki włókna światłowodowego- wzmocnienie lub osłabienie czułości światłowodu na wybrany czynnik zewnętrzny. W pracy wykazano również, że wpływ temperatury na zmianę naprężeń we włóknie światłowodowym ma swoje główne źródło w zjawisku zwanym rozszerzalnością, cieplną i dotyczy głównie deformacji kompozytu polimerowego. Analizowane problemy związane z laminacją, włókien światłowodowych mogą zostać rozwiązane poprzez zastosowanie miękkiej warstwy lakieru pokrywającego światłowód. Zebrana wiedza została wykorzystana do zaprojektowania hybrydowego czujnika światłowodowego do równoczesnego pomiaru naprężeń i temperatury w kompozycie polimerowym.
EN
In this work, both numerical and experimental results of piezooptic and elastooptic phenomena in photonic polymer composites are presented. This new material consists of a polymer composite and a polymer highly birefringent (HB) microstructured fiber. The polymer fiber can easily reveal deformations occurring in the material during the lamination process. The experimental results obtained can facilitate and separate the numerical analysis of both piezooptic and elastooptic phenomena. Additionally, this work shows that thermal expansion of the composite material is the main reason for the observed changes in stress distribution within the optical fiber during the heating process. Furthermore. the piezooptic and elastooptic phenomena in the optical fibers strongly depend on the angular orientation of the fiber within the composite material. Depending on the orientation of the fiber, stress sensitivity can be either increased or decreased under external perturbation. Polymer HB microstructured fibers embedded in the composite material should be surrounded by an additional soft buffer coating. This additional coating of optical fibers can absorb all adverse stress that appears during the manufacturing process of phot nic polymer composites. The numerical calculations and experimental results presented in this work give the possibility to create a new hybrid sensor by combining two types or polarimetric sensors that are based on a side-hole fiber and an HB photonic crystal fiber (PCF). Both sensors are strain sensitive but only one of them (HB PCF) is temperature insensitive. This combination gives us the possibility to measure strain independently from ambient temperature. The proposed hybrid configuration can be effectively used for more reliable strain and temperature measurements and can be implemented in a wide range of sensing applications.
Rocznik
Tom
Strony
3--105
Opis fizyczny
Bibliogr. 111 poz., rys., tab., wykr.
Twórcy
autor
  • Wydział Fizyki Politechniki Warszawskiej
Bibliografia
  • [1] Encyklopedia PWN 1988, t. 5, s. 187.
  • [2] A. Boczkowska, J. Kapuściński, Z Lindemann. D. Witemberg-Perzyk, S, Wojciechowski, „Kompozyty", OWPW, Warszawa 2000.
  • [3] S.R. Reid, G. Zhou, Impact behavior of fiber-reinforced composite materials and structures, CRC Press, 2003.
  • [4] X.E. Gros, Current and future trends in non-destructive testing of composite materials, Annales de Chimie Science Materials 25 (2000) 539-544.
  • [5] M. Schwartz (Ed.), Encyclopedia of Smart Materials, vol. 2. Wiley, New York 2002, pp. 715-760.
  • [6] D.P. Garg, M.A. Zikry, G.L. Anderson, Current and potential future research activities in adaptive structures: an ARO perspective, Smart Materials and Structures 10 (2001) 610-623.
  • [7] B. Qi, M. Bannister, X. Liu, A. Michie, L. Rajasekera, B. Ashton, Response of an embedded fibre Bragg grating to thermal and mechanical loading in a composite laminate, IOME Australasia, Materials Forum 27 (2004) 93-100.
  • [8] E Chehura, C-C. Ye, S. Staines. S. James, R. Tatam, Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load, Smart Materials and Structures 13 (2004) 888-895.
  • [9] A. Michie, J. Canning, K Lyytikainen, M. Aslund, J. Digweed, Temperature independent highly birefringent photonic crystal fibre, Opt . Express, vol. 12, pp. 5160-5165, 2004.
  • [10] A. Majewski, Podstawy techniki światłowodowej, O.W.P.W. Warszawa 1997.
  • [11] T.R. Woliński, Anizotropowe struktury światłowodowe, TEMPUS series in Applied Physics, Warszawa 1997.
  • [12] P. Russell. Photonic band gaps, Phys. Word. 1992, 37-42.
  • [13] J.C. Knight, Photonic Crystal Fibers, Nature, 2003, 424, 847-851.
  • [14] J.C. Knight, T. Birks, B. Mangan, P. Russell, Photonic Crystal Fibers, Opt. & Photon. News, 2002, 30, 26-30.
  • [15] W.J. Wadsworth, N. Joly, J.C. Knight, T.A. Birks, F. Biancalana, P.St.J. Russell, Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres, Optics Express, 12(2):299-309, 2004.
  • [16] K.P. Hansen, A. Petersson, J.R. Folkenberg, M. Albertsen, A. Bjarkev, Birefringence-induced splitting of tire Zero-dispersion Wavelength in Nonlinear Photonic Crystal Fibers, Optics Letters 29, 14 (2004).
  • [17] M.J. Steel, R.M. Osgood, Jr., Ellipitical-hole photonic crystal fibers, Opt. Lett., vol. 26, no. 4, 2001.
  • [18] R. Buczyński, Photonic crystal fibers, Acta Physica Polonica A, no. 2, vol. 106, pp. 141-167, 2004.
  • [19] J.C. Knight, J. Broeng, T.A. Birks, P.St.J. Russell, Photonic bond gap guidance in optical fibres, Science, 282: 1476-1478, November 1998.
  • [20] J.D. Joannopoulos, R.D. Meade and J.N. Winn. Photonic crystals molding the flow of light Princeton University Press, Princeton, New Jersey 1995.
  • [21] A. Figotin, Y.A. Godin. Tire computation of spectra of some 2D photonic crystals. J. Comput. Physics 136, pp. 585-598 1997.
  • [22] J.A. Monsoriu, E. Silvestre, A. Ferrando, P Andres, J.J. Miret. High-index-core Bragg Fibers dispersion properties, Opt Express, 12, pp. 1400-1405, 2003.
  • [23] J.C Knight., T.A Birks. P.St.J Russell, D.M Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21(19): 1547-1549, 1996.
  • [24] R.F. Cregan, B.J. Mangan, J.C. Knight, T. A. Birks, P.St.J. Russell, P.J. Roberts, D.C. Allan. Single-mode photonic band gap guidance of light in air, Science. 285:1537-1539, 1999.
  • [25] J.R. Folkeberg, M.D. Nielsen, N.A, Mortensen, C. Jakobsen, H.R. Simonsen, Polarization maintaining large mode area photonic crystal fiber, Opt Express. 12, 956, 2004.
  • [26] T.P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen. H. Simonsen. Highly birefringent index-guiding photonic crystal fibers. Photon. Technol. Lett. vol. 13, no. 6. pp. 588-59, 2001.
  • [27] A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, P.St.J. Russell, Highly birefringent photonic crystal fibers, Opt Lett., 25. 1325-1327, 2000.
  • [28] R.F. Cahill, E. Udd, Phase Nulling Optical Gyro, Optics Letters. vol. 4(3), p. 93, 1979.
  • [29] R.F. Cahill, E. Udd, Solid-State Phase-Nulling Optical Gyro. Applied Optics, vol. 19, No 18, p. 3054, 14, September 1980.
  • [30] E. Udd, Embedded Sensors Make Structures "Smart", Laser Focus, p. 135. May 1988.
  • [31] E. Udd et al., Fiber-Optic Sensor Systems for Aerospace Applications, Proceedings of SPIE, vol. 838, p. 162, 1987.
  • [32] T. Clark, E. Udd, J.A. Eck. Demodulation of Bragg Grating Sensors, Proceedings of SPIE. vol. 2072, p. 274, 1993 .
  • [33] E. Udd, T. Clark, Fiber Optic Grating Sensor Systems for Sensing Environmental effects. US Patent 5,380,995, Ja,. 10. 1995.
  • [34] E. Udd, T. Clark. Sensor Systems Employing Optical Fiber Gratmgs. US Patent 5.397.891. Mar. 14. 1995.
  • [35] E. Udd, K. Corona, K.T. Slattery, D.J. Dorr. Tension and Compression Measurements in Composite Utility Poles Using Fiber Optic Grating Sensors. Proceedings of SPIE, vol. 2574, p. 14, 1995.
  • [36] E. Udd, K. Corona, K.T. Slattery, D.J. Dorr, Fiber Grating System Used to Measure Strain in a 22-Foot Composite Utility Pole, Proceedings of SPIE. vol. 2721, 1996.
  • [37] E. Udd, K. Corona-Bittick. J. Dorr, K.T. Slattery, Low-cost fiber grating sensor demodulator using a temperature-compensated fiber grating spectral filter, Proc. SPIE vol. 3180, p. 63, 1997 .
  • [38] J.M Seim, W.L. Schulz, E. Udd, K. Coron-Bittick. J. Dorr, K.T. Slattery, Low-Cost High-Speed Fiber Optic Grating Demodulation System for Monitoring Composite Structures. SPIE Proceedings, vol. 3326, p. 390, 1998.
  • [39] J. Scim, W.L. Schult, E. Udd, M. Morrell, Higher Speed Demodulation of Fiber Grating Sensors, SP I E Proceedings, vol. 3670, p. 8, 1999.
  • [40] J.M. Seim, W.L. Schulz, E. Udd, H.M. Laylor. S.M. Soltesz, R. Edgar, Development and Deployment of Fiber Optic Highway and Bridge Monitoring Sensor Systems. SPIE Proceedings, vol. 3995, p. 479, 2000.
  • [41] W. Schull, J. Come, E. Udd, J. Seim, Static and Dynamic Testing of Bridges and highways using Long-Gage Fiber Bragg Grating Based Strain Sensors, SPIE Proceedings, vol. 4202, p. 79, 2000.
  • [42] E. Udd, J. Seim, W. Schulz, R. McMahon, Mom taring Trucks, Cars and Joggers on the horsetail Falls Bridge Using Fiber Optic Grating Strain Sensors, SPIE Proceedings. Vol. 4185, p. 872, 2000.
  • [43] W.L. Schulz, J.P. Conte, E. Udd, M. Kunzler. Structural Damage Assessment Ha Model Property Identification Using Macro-Strain Measurements with Fiber Bragg Gratings as an Alternative to Accelerometers, Proceedings of OFS-15, Portland, Oregon, IEEE, p. 67, 2002.
  • [44] S.G. Calvert, J.P. Conte, B. Moaveni, W.L. Schulz, R. de Callalfon, Real Time Damage Assessment Using Fiber Optic Grating Sensors, Proceeding of SPIE, vol. 5278, p. 110, 2003.
  • [45] M.J. Bartow, S.G. Calven, P.V. Bayly, Fiber Bragg Grating Sensors for Dynamic Machining Applications. Proceedings of SPIE, vol. 5278, p. 21, 2003.
  • [46] M.J. Bartow, S.G. Calven, P.V. Bayly, Fiber Bragg Grating Sensors for Dynamic Machining Applications, Proceedings of SPIE, vol. 5278, p. 21, 2003.
  • [47] I. Perez, H.L. Cui, E. Udd, Acoustic Emission Detection using Fiter Bragg Gratings, Proceedings of SPIE, vol. 4328, p. 209, 2001.
  • [48] S. Calven, High-Speed Dual-Axis Strain Using a Single Fiber Bragg Grating, Proceedings of SPIE, vol. 5384, p. 229, 2004.
  • [49] M. Born, E. Wolf, Principles of Optics, Sixth Edition Pergamon Press: Oxford, 1993.
  • [50] S. Huard, Polarization of Light, Wiley: Chichester, 1997.
  • [51] T.R. Woliński, Polarization Phenomena in Optical Systems. in Encyclopedia of Optical Engineering Ronald G. Diggers Editor (M. Dekker Inc., New York), pp. 2150-2175, 2003.
  • [52] F. Ratajczyk, Optyka ośrodków anizotropowych, PWN, Warszawa 1994.
  • [53] A. Kuske, G. Robertson, Photoelastic Stress Analysis, Wiley; London, UK: 1974.
  • [54] W. Urbańczyk, T. Martynkien, W.J. Bock, Dispersion effects in elliptical core highly birefringent fibers, Appl. Opt., vol. 40 ( 12), pp. 1911-1919, 2001 .
  • [55] V.P. Tzolov, M. Fontaine, Theoretical analysis of birefringence and form induced polarization mode dispersion in birefringent optical fibers: A full vectorial approach, J. Appl. Phys., vol. 77 (1), pp. 1-6, 1995.
  • [56] G. W. Scherer, Stress induced index profile distorsion in optical waveguides. Appl. Opt., vol. 19 (12), pp. 2000-2006, 1980.
  • [57] K.H. Tsai, K.S . Kim. T.F. Morse, General solutions for stress induced polarization in optical fibers, J. of Light. Technol.. vol. 9 (1), pp. 7-17, 1991.
  • [58] M.J. Steel. J.R.M. Osgood, Polarization and dispersive properties of elliptical-hole photonic crystal fibers, J. Lightwave Technol., 19. pp. 495-503, 2001.
  • [59] J. Wang, H. Niino, A. Yabe, One-step microfabrication of fused silica by laser ablation of an organic solution, Applied Physics A, volume 68, Issue 1, pp. 111-113, 1999.
  • [60] K. Oh, U. Paek, Silica optical fiber technology for devices and components: design, fabrication and international standards, John Wiley and Sons, Inc., Hoboken, New Jersey, 2012.
  • [61] O.L. Anderson, D.A. Stuart, Calculation of Activation Energy of Ionic Conductivity in Silica Glasses by Classical Methods, Journal of the American Ceramic Society, vol. 37, Iss. 12, pp. 573-580, 1954.
  • [62] A.J. Guy, Essentials of Materials Science, McGraw-Hill, 1976.
  • [63] W.D. Kingery, H.C. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd Edition, John Wiley and Sons, New York, 1976.
  • [64] O.V. Butov, K.M. Golant, A.L. Tomashuk, M.J.N. van Stralen, A.H.E. Breuls, Refractive index dispersion of doped silica for fiber optics, Opt. Comm., vol. 213, 4-6, 1, Pages 301-308, 2002.
  • [65] K. Najafi, K. Suzuki, Measurement of fracture stress, youngs modulus, and intrinsic stress of heavily boron-doped silicon microstructures, Thin Solid Films, vol. 181, pp. 251-258, 1989.
  • [66] Y. Tsukahara, K. Ohira. M. Yanaka, M. Inaba, A. Satoh, Elastic properties measurements of glass layers fabricated on silicon wafers far microelectronics and micromachines, IEEE Trans. Ultranson. Ferroelect. Freq. Cont. , vol. 42, no. 3, pp. 387-391, 1995.
  • [67] J. Noda, K. Okamoto, Y. Sasaki, Polarization maintaining fibers and their applications, J. Lightwave Technol., LT-4, no. 8, 19, pp. 1071-1089, 1986.
  • [68] A. Anuszkiewicz., W. Urbańczyk, Transmission characteristics of rocking filters with different birefringence dispersion and structural parameters. J. Opt. 15 125715 doi: 10.1088/2040-897 8/15/12/125715.2013.
  • [69] T. Martynkien, W. Urbańczyk, Modeling of spectral characteristics of Corning PMF-38 highly birefringent fiber, Optik -International Journal for Light and Electron Optics. Volume 113. Issue 1, Pages 25-30,2002.
  • [70] I. Kujawa, D. Pysz. R. Buczyński , A. Filipkowski, R. Stępień. Dwójłomny światłowód szklano-powietrzny o eliptycznych elementach sieci płaszcza fotonicznego. Elektronika, Energetyka, Elektrotechnika. Pprzegląd elektrotechniczny, 2010-10.
  • [71] S.J. Savory, F.P. Payne, Pulse Propagation in Fibers with Polarization-Mode Dispersion. Journal of Lightwave Technology 19(3), pp. 350-357 (2001).
  • [72] C.D. Poole, D.L. Favin, Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer, Journal of Lightwave Technology 12(6), pp. 917-929 (1994).
  • [73] C.D. Poole, R.E. Wagner, Phenomenological Approach to Polarization Mode Dispersion in Long Single-Mode Fibers. Electronics Letters 22(19), pp. 1029-1030 (1986).
  • [74] C D. Poole, Statistical Treatment of Polarization Mode Dispersion in Single Mode Fibers Optics Letters 13(8), p. 687 (1988).
  • [75] C.D. Poole, N. Bergano, R. Wagner, H.J. Schulte, Polarization Dispersion and Principal States in a 147-km Undersea Lightwave Cable, Journal of Light wave Technology 6, p. 1185 (1988).
  • [76] T.R. Woliński, Polarimetric optical fibers and sensors, Progres in Optics XL. 1-75. Wydane przez E. Wolf, North Holland. 2000.
  • [77] A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara, W. Urbańczyk, Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence, Opt Express., 21(10):12657-67, 2013.
  • [78] G.E. Agrawal, Fiber-Optic Communication Systems. John Wiley & Sons. Inc.. ISBNs: 0-471-21571-6,2002.
  • [79] A. Galtarossa, L. Palmieri, M. Schiano, T. Tambosso, Improving the Accuracy of the Wavelength-Scanning Technique for PMD Measurements. IEEE Photonics Technology Letters 12(2), pp. 184-186 (2000).
  • [80] B. Huttner, B. Gisin, N. Gisin, Distributed PMD Measurement with a Polarization-OTDR in Optical Fibers, Journal of Lightwave Technology 17(10). pp. 1843-1848 (1999).
  • [81] H. Sunnerud, B.-E. Olsson, P.A. Andrekson, Measurement of Polarization Mode Dispersion Accumulation Along installed Optical Fibers, IEEE Photonics Technology Letters 11(7), pp. 860-862 ( 1999).
  • [82] H. Sunnerud, B.-E. Olsson, M. Karlsson, P.A. Andrekson. J. Brentel. Polarization-Mode Dispersion Measurements Along Installed Optical Fibers Using Gated Backscattered Light and a Polarimeter. Journal of Lightwave Technology 18(7), pp. 897-904 (2000).
  • [83] P.A. Williams. C.M. Wang, Corrections to Fixed Analyzer Measurements of Polarization Mode Dispersion, Journal of Lightwave Technology 16(4), pp. 534-541 (1998).
  • [84] W.J. Bock, A. W. Domański, T.R. Woliński, Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow tie fibers, Applied Optics, 29(24), pp. 3484-8, 1990.
  • [85] W.J. Bock, M.S. Nawrocka. W. Urbańczyk, Coherence-Multiplexed Fiber-Optic Sensor Systems for Measurements of Pressure and Temperature Changes. IEEE Transactions on Instrumentation and Measurement. vol. 51, No 5, 2002.
  • [86] A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara. W. Urbańczyk, Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence. Opt. Exp., vol. 21, No 10, 2013.
  • [87] M. Szpulak, T. Martynkien, W. Urbańczyk, Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers, Appl. Opt. vol. 4, No 24, 2004.
  • [88] T. Martynkien, P. Mergo, W. Urbańczyk, Sensitivity of Birefringent Microstructured Polymer Optical Fiber to Hydrostatic Pressure, Phot. Techn. Lett., vol. 25 (16) 2013.
  • [89] G. Statkiewicz, T. Martynkien, W. Urbańczyk, Measurements of birefringence and its sensitivity to hydrostatic pressure and elongation in photonic bandgap hollow core fiber with residual core ellipticity, Optics Communications 255, pp. 175-183 (2005).
  • [90] M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasiłowski, F. Berghmans, H. Thienpont, Experimental and theoretical investigations of the birefringent holey fiber with triple defect, Applied Optics 44. pp. 2652-2658 (2005).
  • [91] M.K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbańczyk , D.J. Webb, Measurements of polarimetric sensitivity to hydrostatic pressure. strain and temperature in birefringent dual-core microstructured polymer fiber, Opt. Exp., vol. 18, No 12, pp. 12076-12087,2010.
  • [92] J. Calero, S. Wu, C. Pope, S.L. Chuang, J.P. Murtha, JLT, vol. LT-12, No 6, pp. 1081-1090, 1994.
  • [93] T.H. Chua, C. Chen. Applied Optics, vol. 28, No 15, pp. 3158, 1989.
  • [94] F. Zhang, J.W.Y. Lit, Temperature and Strain Sensitivity Measurements of High-Birefringent Polarization-maintaining Fibers, Appl. Opt., vol. 32, No 13, pp. 2213-2218, 1993.
  • [95] P. Hlubina, T. Martynkien, J. Olszewski, P. Mergo, M. Makara, K. Poturaj, W. Urbańczyk. Spectral-Domain Measurements of Birefringence and Sensing Characteristics of a Side-Hole Microstructwed Fiber, Sensors 13, pp. 11424-11438 (2013).
  • [96] F. Zhang. J.W.Y. Lit, Temperature and Strain Sensitivity Measurements of High-Birefringent Polarization-maintaining Fibers, Appl. Opt., vol. 32, No 13, pp. 2213-2218, 1993.
  • [97] A. Michie, J. Canning, K. Lyytikainen, M. Aslund, J. Digweed, Temperature independent highly birefringent photonic crystal fibre, Opt. Express 12, 5160-5165 (2004).
  • [98] D. Kim, J.U. Kang, Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduce d temperature sensitivity, Opt. Express 12, 4490-4495 (2004) .
  • [99] T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbańczyk. J. Wójcik. P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, H. Thienpont, Birefringent photonic crystal fibers with zero polarimetric sensitivity 10 temperature, Appl. Phys. B, val. 94 (4), pp. 635-640, 2009.
  • [100] M. Szeląg, P. Lesiak, M. Kuczkowski, A.W. Domański, T.R. Woliński, Influence of the composite material thermal expansion on embedded highly birefringent polymer microstructured optical fibers, Proceedings of SPIE, Fifth European Workshop on Optical Fibre Sensors, vol. 87942Z, 2013.
  • [101] G.F. Cowperthwaite et al., Biomedical and Dental Application of Polymers, Plenum Press 1981.
  • [102] R.R. Braga, J.J. Ferracane, Alternatives in polymerization contraction stress management, J. Appl. Oral. Sci, 2004, 12 (sp. issue): 1-11.
  • [103] P. Lesiak, M. Szeląg, S. Awietjan, M. Kuczkowski, S. Ertman, D. Budaszewski, A. Domański, T. Woliński, Influence of the lamination process on plastic optical fiber sensors embedded in composite materials, Proceedings of SPIE, vol. 8774 877405-1, 2013.
  • [104] P. Lesiak, M. Szeląg, D. Budaszewski, R. Plaga, K. Mileńko, G. Rajan, Y. Semenova, T. Wolitński Influence of lamination process on optical fiber sensors embedded in composite material: (2012) Measurement: Journal of the International Measurement Confederation 45 (9), pp. 2275-2280.
  • [105] R. Plaga, P. Lesiak. T.R. Woliński, Fiber optic structures for dynamic stress sensing, (2011), Proceedings of SPIE - The International Society for Optical Engineering 8008, art. no. 80081 Y.
  • [106] D. Budaszewski, P. Lesiak, R. Plaga, G. Rajan, Y. Semenova, G. Farrell, A. Boczkowska, Influence of angular orientation of the embedded highly birefringent fiber on pmd changes under axial stress, ( ... ), T. Woliński, (2011), Acta Physica Polonica A 120 (4), pp. 575-578.
  • [107] M. Ramakrishnan, G. Rajan, Y. Semenova, P. Lesiak, A. Domańsk,. T. Woliński, A. Boczkowska, G. Farrell, The influence of thermal expansion of a composite material on embedded polarimetric sensors. (2011). Smart Materials and Structures 20 (12), art. no. 125002.
  • [108] P. Lesiak, M. Szeląg, K. Mileńko, T.R. Woliński, A.W. Domański, K. Jędrzejewski, A. Boczkowska, Polarimetric and bragg optical fiber sensors for stress distribution and temperature measurements in composite materials, (2011), Acta Physica Polonica A 120 (4). pp. 698-701.
  • [109] A.W. Domański, P. Lesiak, K. Mileńko, D. Budaszewski, M. Chychłowski, S. Ertman, M. Tefelska, A. Boczkowska, Comparison of bragg end polarimetric optical fiber sensors for stress monitoring in composite materials (2009). Acta Physica Polonica A 116 (3), pp. 294-297.
  • [110] P. Lesiak, G. Rajan, Y. Semenova, G. Farrell, A. Boczkowska, A. Domański, T. Woliński, A hybrid highly birefringent fiber optic sensing system for simultaneous strain and temperature measurement, (2010). Photonics Letters of Poland 2 (3)1 pp. 140-142.
  • [111] G. Rajan. M. Ramakrishnan, Y. Semenov,. K. Milenko, P. Lesiak, A. W. Domański, T.R. Woliński, G. Farrell, A photonic crystal fiber and fiber Bragg grating-based hybrid fiber-optic sensor system. (20 12). IEEE Sensors Journal 12 (1). art. no. 5713220, pp. 39-43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80f95f5a-1787-41af-970e-7f3f292a32c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.