PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Framework for Developing Emergency Scenarios for Virtual Reality-Based Training and Research in Transportation Systems: A Risk Assessment Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The development of immersive technologies, including virtual reality, is driving new research and training tools that exploit their potential. Numerous publications demonstrate the numerous advantages of VR tools over traditional training systems. However, correctly preparing training and research scenarios, which are then implemented into the developed tool, is critical for achieving goals. Moreover, the literature lacks guidance regarding the methodology for preparing VR scenarios, particularly emergency scenarios. This paper presents the concept of designing contingency scenarios for training and research implemented in virtual reality based on risk assessment. Methods: The research used the results of a literature review conducted using an integrative approach. To develop the conceptual framework of the VR contingency scenario design method, the study also used measurements and the results of accompanying observations collected during four research projects in which training scenarios for transport workers were developed. The collected knowledge was also complemented by unstructured face-to-face interviews with representatives of companies developing VR training tools and by an analysis of industry publications. Results: Based on the analysis of the material collected, a framework for the design of emergency training scenarios for VR-based tools was developed. This framework includes identifying the different types of scenarios to be implemented (depending on the purpose of the research/training), steps for this implementation, a proposal for research methods, and the expected results. Conclusions: The framework for designing contingency scenarios has been developed to support the implementation of research and training for transport systems, but can also be applied to other sectors. The concept focuses primarily on the methodology for preparing the scenario but no longer addresses the technical feasibility of reproducing it in the real world. However, the author's project experience and publications by other authors confirm that the technological capabilities of contemporary VR tools meet the requirements of the proposed approach.
Czasopismo
Rocznik
Strony
141--152
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Technical Systems Operation and Maintenance, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Poland
Bibliografia
  • 1. Andersen, A. G., Rahmoui, L., Dalsgaard, T.-S., Svendsen, M. B. S., Clementsen, P. F., Konge, L., & Bjerrum, F. (2023). Preparing for Reality: A Randomized Trial on Immersive Virtual Reality for Bronchoscopy Training. Respiration, 102(4), 316–323. https://doi.org/10.1159/000528319
  • 2. Burke, M. J., Sarpy, S. A., Smith-Crowe, K., Chan-Serafin, S., Salvador, R. O., & Islam, G. (2006). Relative Effectiveness of Worker Safety and Health Training Methods. American Journal of Public Health, 96(2), 315–324. https://doi.org/10.2105/AJPH.2004.059840
  • 3. Buttussi, F., & Chittaro, L. (2018). Effects of Different Types of Virtual Reality Display on Presence and Learning in a Safety Training Scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063–1076. https://doi.org/10.1109/TVCG.2017.2653117
  • 4. Cha, M., Han, S., Lee, J., & Choi, B. (2012). A virtual reality based fire training simulator integrated with fire dynamics data. Fire Safety Journal, 50, 12–24. https://doi.org/10.1016/j.firesaf.2012.01.004
  • 5. Davis, M. T., Proctor, M. D., & Shageer, B. (2017). Disaster factor screening using SoS conceptual modeling and an LVC simulation framework. Reliability Engineering & System Safety, 165, 368–375. https://doi.org/10.1016/j.ress.2017.04.020
  • 6. Feng, Z., González, V. A., Amor, R., Lovreglio, R., & Cabrera-Guerrero, G. (2018). Immersive virtual reality serious games for evacuation training and research: A systematic literature review. Computers & Education, 127, 252–266. https://doi.org/10.1016/j.compedu.2018.09.002
  • 7. Franca, J., Luquetti dos Santos, I., & Haddad, A. (2019, September 23). Case Study: Human Factors Analysis of FPSO Operations Activities in Brazil. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/196021-MS
  • 8. Fussell, S. G., & Hight, M. P. (2021). Usability Testing of a VR Flight Training Program. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 65(1), 1124–1128. https://doi.org/10.1177/1071181321651096
  • 9. Gamberini, L., Bettelli, A., Benvegnù, G., Orso, V., Spagnolli, A., & Ferri, M. (2021). Designing “Safer Water.” A Virtual Reality Tool for the Safety and the Psychological Well-Being of Citizens Exposed to the Risk of Natural Disasters. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.674171
  • 10. Jensen, L., & Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515–1529. https://doi.org/10.1007/s10639-017-9676-0
  • 11. Laciok, V., Bernatik, A., & Lesnak, M. (2020). Experimental Implementation of New Technology into the Area of Teaching Occupational Safety for Industry 4.0. International Journal of Safety and Security Engineering, 10(3), 403–407. https://doi.org/10.18280/ijsse.100313
  • 12. Lackey, S. J., Maraj, C. S., & Salcedo, J. N. (2015). Assessing personality traits of simulation-based training scenario developers. 48th Annual Simulation Symposium, ANSS 2015, Part of the 2015 Spring Simulation Multi-Conference, SpringSim 2015, 47(2), 1–8.
  • 13. Li, C., Liang, W., Quigley, C., Zhao, Y., & Yu, L.-F. (2017). Earthquake Safety Training through Virtual Drills. IEEE Transactions on Visualization and Computer Graphics, 23(4), 1275–1284. https://doi.org/10.1109/TVCG.2017.2656958
  • 14. Longo, F., Padovano, A., De Felice, F., Petrillo, A., & Elbasheer, M. (2023). From “prepare for the unknown” to “train for what’s coming”: A digital twin-driven and cognitive training approach for the workforce of the future in smart factories. Journal of Industrial Information Integration, 32, 100437. https://doi.org/10.1016/j.jii.2023.100437
  • 15. Mandal, S. (2013). Brief Introduction of Virtual Reality & its Challenges. International Journal of Scientific & Engineering Research, 4(4), 304–309.
  • 16. Mentis, H. M., Chellali, A., Manser, K., Cao, C. G. L., & Schwaitzberg, S. D. (2016). A systematic review of the effect of distraction on surgeon performance: directions for operating room policy and surgical training. Surgical Endoscopy, 30(5), 1713–1724. https://doi.org/10.1007/s00464-015-4443-z
  • 17. Moorthy, K., Munz, Y., Adams, S., Pandey, V., & Darzi, A. (2005). A Human Factors Analysis of Technical and Team Skills Among Surgical Trainees During Procedural Simulations in a Simulated Operating Theatre. Annals of Surgery, 242(5), 631–639. https://doi.org/10.1097/01.sla.0000186298.79308.a8
  • 18. Mora-Serrano, J., Muñoz-La Rivera, F., & Valero, I. (2021). Factors for the Automation of the Creation of Virtual Reality Experiences to Raise Awareness of Occupational Hazards on Construction Sites. Electronics, 10(11), 1355. https://doi.org/10.3390/electronics10111355
  • 19. Naranjo, J. E., Sanchez, D. G., Robalino-Lopez, A., Robalino-Lopez, P., Alarcon-Ortiz, A., & Garcia, M. V. (2020). A Scoping Review on Virtual Reality-Based Industrial Training. Applied Sciences, 10(22), 8224. https://doi.org/10.3390/app10228224
  • 20. Neguţ, A., Matu, S.-A., Sava, F. A., & David, D. (2016). Task difficulty of virtual reality-based assessment tools compared to classical paper-and-pencil or computerized measures: A meta-analytic approach. Computers in Human Behavior, 54, 414–424. https://doi.org/10.1016/j.chb.2015.08.029
  • 21. Parham, G., Bing, E. G., Cuevas, A., Fisher, B., Skinner, J., Mwanahamuntu, M., & Sullivan, R. (2019). Creating a low-cost virtual reality surgical simulation to increase surgical oncology capacity and capability. Ecancermedicalscience, 13. https://doi.org/10.3332/ecancer.2019.910
  • 22. Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. https://doi.org/10.1016/j.compedu.2019.103778
  • 23. Saghafian, M., Laumann, K., Akhtar, R. S., & Skogstad, M. R. (2020). The Evaluation of Virtual Reality Fire Extinguisher Training. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.593466
  • 24. Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
  • 25. Sun, R., Wu, Y. J., & Cai, Q. (2019). The effect of a virtual reality learning environment on learners’ spatial ability. Virtual Reality, 23(4), 385–398. https://doi.org/10.1007/s10055-018-0355-2
  • 26. Trappey, A. J. C., Trappey, C. V., Chao, M.-H., & Wu, C.-T. (2022). VR-enabled engineering consultation chatbot for integrated and intelligent manufacturing services. Journal of Industrial Information Integration, 26, 100331. https://doi.org/10.1016/j.jii.2022.100331
  • 27. Tubis, A. A., Kierzkowski, A., Kisiel, T., Mardeusz, E., Ryczyński, J., & Wolniewicz, Ł. (2024). Risk Assessment for the Development of Emergency Scenarios for Tram Driver Training. Applied Sciences, 14(22), 10444. https://doi.org/10.3390/app142210444
  • 28. Tubis, A. A., Restel, F., & Jodejko-Pietruczuk, A. (2024). Challenges of applying virtual technology to transport systems research. IEEM 2024 International Conference on Industrial Engineering and Engineering Management.
  • 29. Wang, Z., Mao, Z., Li, Y., Yu, L., & Zou, L. (2023). VR-based fire evacuation in underground rail station considering staff’s behaviors: model, system development and experiment. Virtual Reality, 27(2), 1145–1155. https://doi.org/10.1007/s10055-022-00718-3
  • 30. Zadeh, L. A. (1965). Fuzzy Sets. Information and control, 8, 338 - 353
  • 31. Zhang, Y., Bian, Y., Zhao, X., & Zhao, X. (2024). Integrating Safety and Efficiency: Design and Evaluation of Dynamic Emergency Evacuation Sign System in Urban Rail Transit. Sustainability, 16(24), 10921. https://doi.org/10.3390/su162410921
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80f8d86a-7e00-46d9-b366-93c2eb2c79e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.