PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infrared small-target detection under a complex background based on a local gradient contrast method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Small target detection under a complex background has always been a hot and difficult problem in the field of image processing. Due to the factors such as a complex background and a low signal-to-noise ratio, the existing methods cannot robustly detect targets submerged in strong clutter and noise. In this paper, a local gradient contrast method (LGCM) is proposed. Firstly, the optimal scale for each pixel is obtained by calculating a multiscale salient map. Then, a subblockbased local gradient measure is designed; it can suppress strong clutter interference and pixel-sized noise simultaneously. Thirdly, the subblock-based local gradient measure and the salient map are utilized to construct the LGCM. Finally, an adaptive threshold is employed to extract the final detection result. Experimental results on six datasets demonstrate that the proposed method can discard clutters and yield superior results compared with state-of-the-art methods.
Rocznik
Strony
33--43
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • College of Information and Communication, National University of Defense Technology, No. 618 Yanhe Avenue, Qiaokou District, 430030 Wuhan City, China
autor
  • College of Information and Communication, National University of Defense Technology, No. 618 Yanhe Avenue, Qiaokou District, 430030 Wuhan City, China
autor
  • College of Information and Communication, National University of Defense Technology, No. 618 Yanhe Avenue, Qiaokou District, 430030 Wuhan City, China
  • College of Information and Communication, National University of Defense Technology, No. 618 Yanhe Avenue, Qiaokou District, 430030 Wuhan City, China
autor
  • College of Information and Communication, National University of Defense Technology, No. 618 Yanhe Avenue, Qiaokou District, 430030 Wuhan City, China
autor
  • College of Information and Communication, National University of Defense Technology, No. 618 Yanhe Avenue, Qiaokou District, 430030 Wuhan City, China
Bibliografia
  • [1] Aghaziyarati, S., Moradi, S. and Talebi, H. (2019). Small infrared target detection using absolute average difference weighted by cumulative directional derivatives, Infrared Physics and Technology 101: 78-87, DOI: 10.1016/j.infrared.2019.06.003.
  • [2] Andrysiak, T. and Choras, M. (2005). Image retrieval based on hierarchical Gabor filters, International Journal of Applied Mathematics and Computer Science 15(4): 471-480.
  • [3] Baran, R., Rusc, T. and Fornalski, P. (2016). A smart camera for the surveillance of vehicles in intelligent transportation systems, Multimedia Tools and Applications 75(17): 10471-10493, DOI: 10.1007/s11042-015-3151-y.
  • [4] Chen, C.L.P., Li, H., Wei, Y.T., Xia, T. and Tang, Y.Y. (2014). A local contrast method for small infrared target detection, IEEE Transactions on Geoscience and Remote Sensing 52(1): 574-581, DOI: 10.1109/TGRS.2013.2242477.
  • [5] Chmiel, W., Danda, J., Dziech, A., Ernst, S., Kadluczka, P., Mikrut, Z., Pawlik, P., Szwed, P. and Wojnicki, I. (2016). Insigma: An intelligent transportation system for urban mobility enhancement, Multimedia Tools and Applications 75(17): 10529-10560, DOI: 10.1007/s11042-016-3367-5.
  • [6] Deng, H., Sun, X.P., Liu, M.L., Ye, C.H. and Zhou, X. (2016). Infrared small-target detection using multiscale gray difference weighted image entropy, IEEE Transactions on Aerospace and Electronic Systems 52(1): 60-72, DOI: 10.1109/TAES.2015.140878.
  • [7] Deshpande, S.D., Meng, H.E., Ronda, V. and Chan, P. (1999). Max-mean and max-median filters for detection of small-targets, Proceedings of SPIE 3809: 74-83.
  • [8] Han, J.H., Liang, K., Zhou, B., Zhu, X.Y., Zhao, J. and Zhao, L.L. (2018a). Infrared small target detection utilizing the multiscale relative local contrast measure, IEEE Geoscience and Remote Sensing Letters 15(4): 612-616, DOI: 10.1109/LGRS.2018.2790909.
  • [9] Han, J.H., Liu, S.B., Qin, G., Zhao, Q., Zhang, H.H. and Li, N.N. (2019). A local contrast method combined with adaptive background estimation for infrared small target detection, IEEE Geoscience and Remote Sensing Letters 16(9): 1442-1446, DOI: 10.1109/LGRS.2019.2898893.
  • [10] Han, J.H., Moradi, S., Faramarzi, I., Liu, C.Y., Zhang, H.H. and Zhao, Q. (2020). A local contrast method for infrared small-target detection utilizing a tri-layer window, IEEE Geoscience and Remote Sensing Letters 17(10): 1822-1826, DOI: 10.1109/LGRS.2019.2954578.
  • [11] Han, J.H., Yu, Y. and Liang, K. (2018b). Infrared small-target detection under complex background based on subblock-level ratio-difference joint local contrast measure, Optical Engineering 57(10): 103105, DOI: 10.1117/1.OE.57.10.103105.
  • [12] Kowalski, M., Kaczmarek, P., Kabaciński, R., Matuszczak, M., Tranbowicz, K. and Sobkowiak, R. (2014). A simultaneous localization and tracking method for a worm tracking system, International Journal of Applied Mathematics and Computer Science 24(3): 599-609, DOI: 10.2478/amcs-2014-0043.
  • [13] Li, H., Wang, Q., Wang, H. and Yang, W.K. (2021). Infrared small target detection using tensor based least mean square, Computers and Electrical Engineering 91: 106994, DOI: 10.1016/j.compeleceng.2021.106994.
  • [14] Li, W., Zhao, M.J., Deng, X.Y., Li, L., Li, L.W. and Zhang, W.J. (2019). Infrared small target detection using local and nonlocal spatial information, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(9): 3677-3689, DOI: 10.1109/JSTARS.2019.2931566.
  • [15] Liu, J., He, Z.Q., Chen, Z.L. and Shao, L. (2018a). Tiny and dim infrared target detection based on weighted local contrast, IEEE Geoscience and Remote Sensing Letters 15(11): 1780-1784, DOI: 10.1109/LGRS.2018.2856762.
  • [16] Liu, J., He, Z.Q., Chen, Z.L. and Shao, L. (2018b). Tiny and dim infrared target detection based on weighted local contrast, IEEE Geoscience and Remote Sensing Letters 15(11): 1780-1784, DOI: 10.1109/LGRS.2018.2856762.
  • [17] Nasiri, M. and Chehresa, S. (2017). Infrared small target enhancement based on variance difference, Infrared Physics and Technology 82: 107-119, DOI: 10.1016/j.infrared.2017.03.003.
  • [18] Shi, Y.F., Wei, Y.T., Yao, H., Pan, D.H. and Xiao, G.R. (2018). High-boost-based multiscale local contrast measure for infrared small target detection, IEEE Geoscience and Remote Sensing Letters 15(1): 33-37, DOI: 10.1109/LGRS.2017.2772030.
  • [19] Tabor, Z. (2010). Surrogate data: A novel approach to object detection, International Journal of Applied Mathematics and Computer Science 20(3): 545-553, DOI: 10.2478/v10006-010-0040-4.
  • [20] Uzair, M., Brinkworth, R.S. and Finn, A. (2020). A bio-inspired spatiotemporal contrast operator for small and low-heat-signature target detection in infrared imagery, Neural Computing and Applications 33(13): 7311-7324, DOI: 10.1007/s00521-020-05206-w.
  • [21] Wei, Y.T., You, X.G. and Li, H. (2016). Multiscale patch-based contrast measure for small infrared target detection, Pattern Recognition 58: 216-226, DOI: 10.1016/j.patcog.2016.04.002.
  • [22] Xia, C.Q., Li, X.R., Zhao, L.Y. and Shu, R. (2020). Infrared small target detection based on multiscale local contrast measure using local energy factor, IEEE Geoscience and Remote Sensing Letters 17(1): 157-161, DOI: 10.1109/LGRS.2019.2914432.
  • [23] Xie, T., Zhang, W.K., Yang, L.N., Wang, Q.P., Huang, J.J. and Yuan, N.C. (2018). Inshore ship detection based on level set method and visual saliency for sar images, Sensors 18(11): 3877, DOI: 10.3390/s18113877.
  • [24] Xiong, B., Huang, X.H. and Wang, M. (2021). Local gradient field feature contrast measure for infrared small target detection, IEEE Geoscience and Remote Sensing Letters 18(3): 553-557, DOI: 10.1109/LGRS.2020.2976208.
  • [25] Yang, L.L., Yan, P., Li, M.H., Zhang, J.L. and Xu, Z.Y. (2022). Infrared small target detection based on a group image-patch tensor model, IEEE Geoscience and Remote Sensing Letters 19: 1-5, DOI: 10.1109/LGRS.2021.3140067.
  • [26] Yao, S.B., Zhu, Q.Y., Zhang, T., Cui, W.N. and Yan, P.M. (2022). Infrared image small-target detection based on improved FCOS and spatio-temporal features, Electronics 11(6): 933, DOI: 10.3390/electronics11060933.
  • [27] Yu, X., Xie, W. and Yu, J. (2022). A single image deblurring approach based on a fractional order dark channel prior, International Journal of Applied Mathematics and Computer Science 32(3): 441–454, DOI: 10.34768/amcs-2022-0032.
  • [28] Zhang, H., Zhang, L., Yuan, D. and Chen, H. (2018). Infrared small target detection based on local intensity and gradient properties, Infrared Physics and Technology 89: 88-96, DOI: 10.1016/j.infrared.2017.12.018.
  • [29] Zhang, K., Yang, K., Li, S.Y. and Chen, H.B. (2019). A difference-based local contrast method for infrared small target detection under complex background, IEEE Access 7: 105503-105513, DOI: 10.1109/ACCESS.2019.2932729.
  • [30] Zhang, W., Cong, M.Y. and Wang, L.P. (2003). Algorithms for optical weak small targets detection and tracking: Review, Proceedings of 2003 International Conference on Neural Networks and Signal Processing, Nanjing, China, pp. 643–647.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80f8d356-b6f5-4e4a-8d50-d89cb1b3d18f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.