PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geometry of stress function surfaces for an asymmetric continuum

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A two-dimensional stress field of dislocation or fault is geometrically studied for an asymmetric con tinuum. For geometric surfaces of the stress and couple-stress functions, the mean and Gaussian curvatures are derived. The mean curvature of couple-stress function surface is connected with the asymmetr ic of stress tensor. Moreover, the Gaussian curvature of stress function surface is characterized by bo th the stress and couple-stress. On the other hand, th e mean curvature of stress function surface is not affected by the asy mmetry of stress. Based on these geometric expressions, the Coulomb’s failure criterion and the friction coefficient are expressed by the curvatur es of couple-stress function surface. Moreover, geometric structures of st ress and couple stress function surfaces are shown for edge and wedge dislocations as faults. The curvatures of these surfaces show that the ef fect of couple-stress is constrained around the dislocations only.
Czasopismo
Rocznik
Strony
1703--1721
Opis fizyczny
Bibliogr.
Twórcy
autor
  • Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Kobe, Japan
autor
  • Department of Earth and Plan etary Sciences, Faculty of Science, Kobe University, Kobe, Japan
autor
  • Department of Geoenvironmental Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
Bibliografia
  • 1. Agiasofitou, E., and M. Lazar (2010), On the nonlinear continuum theory of dislocations: a gauge field theoretical approach, J. Elast. 99,2, 163-178, DOI: 10.1007/s10659-009-9238-9.
  • 2. Anthony, K.-H. (1970), Die Theorie der Disklinationen, Arch. Rational Mech. Anal. 39,1, 43-88, DOI: 10.1007/BF00281418 (in German).
  • 3. Eringen, A.C. (1966), Linear theory of micropolar elasticity, J. Math. Mech. 15, 909-923.
  • 4. Eringen, A.C. (1999), Microcontinuum Field Theories. I. Foundations and Solids, Springer, New York, 325 pp.
  • 5. Huilgol, R.R. (1967), On the concentrated force problem for two-dimensional elasticity with couple stresses, Int. J. Eng. Sci. 5,1, 81-93, DOI: 10.1016/0020-7225(67)90055-9.
  • 6. Iordache, M.M., and K. Willam (1998), Localized failure analysis in elastoplastic Cosserat continua, Comput. Method. Appl. Mech. Eng. 151,3-4, 559-586, DOI: 10.1016/S0045-7825(97)00166-7.
  • 7. Kessel, S. (1970), Spannungsfelder einer Schraubenversetzung und einer Stufenversetzung im Cosseratschen Kontinuum, Z. Angew. Math. Mech. 50, 547-553 (in German).
  • 8. Knésl, Z., and F. Semela (1972), The influence of couple-stresses on the elastic properties of an edge dislocation, Int. J. Eng. Sci. 10,1, 83-91, DOI: 10.1016/0020-7225(72)90076-6.
  • 9. Lazar, M., and G.A. Maugin (2004a), Defects in gradient micropolar elasticity - I: Screw dislocation, J. Mech. Phys. Solids 52,10, 2263-2284, DOI: 10.1016/j.jmps.2004.04.003.
  • 10. Lazar, M., and G.A. Maugin (2004b), Defects in gradient micropolar elasticity - II: Edge dislocation and wedge disclination, J. Mech. Phys. Solids 52,10, 2285-2307, DOI: 10.1016/j.jmps.2004.04.002.
  • 11. Lazar, M., G.A. Maugin, and E.C. Aifantis (2005), On dislocations in a special class of generalized elasticity, Phys. Status Solidi B 242,12, 2365-2390, DOI: 10.1002/pssb.200540078.
  • 12. Minagawa, S. (1977), Stress and couple-stress fields produced by Frank disclinations in an isotropic elastic micropolar continuum, Int. J. Eng. Sci. 15,7, 447-453, DOI: 10.1016/0020-7225(77)90035-0.
  • 13. Minagawa, S. (1979), Stress and couple-stress fields produced by circular dislocations in an isotropic elastic micropolar continuum, Z. Angew. Math. Mech. 59,7, 307-315, DOI: 10.1002/zamm.19790590704.
  • 14. Mindlin, R.D. (1963), Influence of couple-stresses on stress concentrations, Exp. Mech. 3,1, 1-7, DOI: 10.1007/BF02327219.
  • 15. Nagahama, H., and R. Teisseyre (2008), Continuum theory of defects: advanced approaches. In: R. Teisseyre, H. Nagahama, and E. Majewski (eds.), Physics of Asymmetric Continuum: Extreme and Fracture Processes, Springer, Berlin Heidelberg, 221-248, DOI: 10.1007/978-3-540-68360-5_17.
  • 16. Nikolaevskiy, V.N. (2005), Theory of plastic sand flow with fluid pressure effect, J. Eng. Mech. - ASCE 131,9, 986-996, DOI: 10.1061/(ASCE)0733-9399(2005)131:9(986).
  • 17. Nowacki, W. (1974), On discrete dislocations in micropolar elasticity, Arch. Mech. Stos. 26,1, 3-11.
  • 18. Nowacki, W. (1986), Theory of Asymmetric Elasticity, Pergamon Press, Oxford - PWN - Polish Scientific Publ., Warszawa, 383 pp.
  • 19. Parry, R.H.G. (2004), Mohr Circles, Stress Paths and Geotechnics, Taylor & Francis, London, 280 pp.
  • 20. Shimbo, M. (1975), A geometrical formulation of asymmetric features in plasticity, Bull. Fac. Eng. Hokkaido Univ. 77, 155-159.
  • 21. Struik, D.J. (1988), Lectures on Classical Differential Geometry, Dover Publs., New York, 232 pp.
  • 22. Teisseyre, R. (1973), Earthquake processes in a micromorphic continuum, Pure Appl. Geophys. 102,1, 15-28, DOI: 10.1007/BF00876588.
  • 23. Teisseyre, R. (2008), Asymmetric continuum: standard theory. In: R. Teisseyre, H. Nagahama, and E. Majewski (eds.), Physics of Asymmetric Continuum: Extreme and Fracture Processes, Springer, Berlin Heidelberg, 95-109, DOI: 10.1007/978-3-540-68360-5_7.
  • 24. Teisseyre, R. (2009), Tutorial on new developments in the physics of rotational motions, Bull. Seismol. Soc. Am. 99,2B, 1028-1039, DOI: 10.1785/0120080089.
  • 25. Teisseyre, R., and M. Górski (2009), Transport in fracture processes: fragmentation and slip, Acta Geophys. 57,3, 583-599, 10.2478/s11600-009-0020-y.
  • 26. Teisseyre, R., and M. Górski (2011), Earthquake fragmentation and slip processes: spin and shear-twist wave mosaic, Acta Geophys. 59,3, 453-469, DOI: 10.2478/s11600-011-0001-9.
  • 27. Teisseyre, R., and M. Shimbo (1995), Differential geometry methods in deformation problems. In: R. Teisseyre (ed.), Theory of Earthquake Premonitory and Fracture Processes, PWN Polish Scientific Publishers, 503-544.
  • 28. Yamasaki, K. (2005), Tensor analysis of dislocation-stress relationship based on the extended deformation gradient, Acta Geophys. Pol. 53,1, 1-12.
  • 29. Yamasaki, K. (2009), A quantum particle motion and thermodynamics in faultsdefects field: path integral formulation based on extended deformation gradient tensor, Acta Geophys. 57,3, 567-582, 10.2478/s11600-009-0016-7.
  • 30. Yamasaki, K. (2010), Differential form of continuum mechanics: operators and equations. In: A. Koppel and J. Oja (eds.), Continuum Mechanics, Nova Science Publishers, New York, 193-221.
  • 31. Yamasaki, K., and H. Nagahama (1999), Hodge duality and continuum theory of defects, J. Phys. A: Math. Gen. 32,44, L475-L481, DOI: 10.1088/0305-4470/32/44/103.
  • 32. Yamasaki, K., and H. Nagahama (2002), A deformed medium including a defect field and differential forms, J. Phys. A: Math. Gen. 35,16, 3767-3778, DOI: 10.1088/0305-4470/35/16/315.
  • 33. Yamasaki, K., and H. Nagahama (2008), Energy integral in fracture mechanics (J-integral) and Gauss-Bonnet theorem, Z. Angew. Math. Mech. 88,6, 515-520, DOI: 10.1002/zamm.200700140.
  • 34. Yamasaki, K., and T. Yajima (2012), Differential geometric approach to the stress aspect of a fault: Airy stress function surface and curvatures, Acta Geophys. 60,1, 4-23, 10.2478/s11600-011-0055-8.
  • 35. Yamasaki, K., T. Yajima, and T. Iwayama (2011), Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures, J. Phys. A: Math. Theor. 44,15, 155501, DOI: 10.1088/1751-8113/44/15/155501.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80f4b6e1-9686-4c62-a556-d2751b3ad705
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.