PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the effect of insoluble additives type on the drag reduction performance in a crude oil turbulent flow system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, the effect of three insoluble additives densities on reducing the drag of crude oil was investigated. The objective of the present work is to evaluate the effect of the insoluble additive’s densities on their drag reduction efficiency in hydrocarbon flow medium. Three powders with different densities are chosen, namely carbon powder, glass powder, and copper powder, with a density of 1710 kg/m3 , 2550 kg/m3 , and 8950 kg/m3 , respectively. The turbulence flow environment was created in a custom-made rotating disc apparatus with a maximum rotation speed of 300 rpm. To evaluate the effect of the powder density, the particle's size was chosen to be 100 µm. All the solutions were tested at the exact operating conditions with a rotation speed ranging between 200 to 2200 rpm. The experimental results showed a clear effect of the powder density on the drag reduction performance. The glass powders showed the highest drag reduction effect, while the copper and carbon powders were lower. The effect of the degree of turbulence on the drag reduction performance of the powders was clear, where the interaction between the powders and the turbulence structures (eddies) governed the turbulence-suppression efficiency of the additives.
Twórcy
  • Department of Production Engineering and Metallurgy, University of Technology - Iraq Baghdad, Iraq
  • Centre for Research in Advanced Fluid and Processes, Department of Chemical Engineering College of Engineering, University Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
  • Department of Production Engineering and Metallurgy, University of Technology - Iraq Baghdad, Iraq
Bibliografia
  • [1] J. Róański, Flow of drag-reducing surfactant solutions in rough pipes, J. Nonnewton. Fluid Mech. 166 (2011) 279–288. https://doi.org/10.1016/j.jnnfm.2010.12.005.
  • [2] K. Gasljevic, K. Hoyer, E.F. Matthys, Temporary degradation and recovery of drag-reducing surfactant solutions, J. Rheol. (N. Y. N. Y). 51 (2007) 645–667. https://doi.org/10.1122/1.2721616.
  • [3] S.K. Fakhruddin, H.A. Abdulbari, A.Z. Sulaiman, H.A. Rafeeq, Investigating the improvement of Degradation Resistant with the Addition of SDBS Anionic Surfactant to PEO polymer, in: S.A. Abdul Karim, N. Zainuddin, M.H. Yusof, N. Sa’ad (Eds.), MATEC Web Conf., 2018: p. 06019. https://doi.org/10.1051/matecconf/201822506019.
  • [4] V.N. Manzhai, Y.R. Nasibullina, A.S. Kuchevskaya, A.G. Filimoshkin, Physico-chemical concept of drag reduction nature in dilute polymer solutions (the Toms effect), Chem. Eng. Process. Process Intensif. 80 (2014) 38–42. https://doi.org/10.1016/j.cep.2014.04.003.
  • [5] F.W.M. Ling, H.A. Abdulbari, Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives, in: H.A. Abdulbari (Ed.), MATEC Web Conf., 2017: p. 01001. https://doi.org/10.1051/matecconf/201711101001.
  • [6] D.W. Bechert, M. Bruse, W. Hage, J.G.T. Van Der Hoeven, G. Hoppe, Experiments on drag-reducing surfaces and their optimization with an adjustable geometry, J. Fluid Mech. 338 (1997) 59–87. https://doi.org/10.1017/S0022112096004673.
  • [7] E.D. Burger, L.G. Chorn, T.K. Perkins, Studies of Drag Reduction Conducted over a Broad Range of Pipeline Conditions when Flowing Prudhoe Bay Crude Oil, J. Rheol. (N. Y. N. Y). 24 (1980) 603–626. https://doi.org/10.1122/1.549579.
  • [8] A. Calin, The influence of drag-reducing additives on crude oil emulsions in pipeline flow, UPB Sci. Bull. Ser. C Electr. Eng. 71 (2009) 197–204.
  • [9] X. Zhang, J. Tian, Drag reduction of resin coatings on pipe wall in crude oil transportation, Pet. Process. Petrochemicals. 32 (2001) 57–61.
  • [10] W. Brostow, H.E. Hagg Lobland, T. Reddy, R.P. Singh, L. White, Lowering mechanical degradation of drag reducers in turbulent flow, J. Mater. Res. 22 (2007) 56–60. https://doi.org/10.1557/jmr.2007.0003.
  • [11] A. Dupas, I. Hénaut, J.F. Argillier, T. Aubry, Seuil de dégradation mécanique de solutions de polymères utilisés en récupération assistée des hydrocarbures, Oil Gas Sci. Technol. 67 (2012) 931–940. https://doi.org/10.2516/ogst/2012028.
  • [12] I. Hénaut, P. Glénat, C. Cassar, M. Gainville, K. Hamdi, P. Pagnier, Mechanical degradation kinetics of polymeric DRAs, in: BHR Gr. - 8th North Am. Conf. Multiph. Technol., 2012: pp. 59–71.
  • [13] I. Sreedhar, N. Saketharam Reddy, S. Abdur Rahman, K. Phanindra Govada, Drag reduction studies in water using polymers and their combinations, in: Mater. Today Proc., 2020: pp. 601–610. https://doi.org/10.1016/j.matpr.2020.04.314.
  • [14] B. Yu, Y. Kawaguchi, Parametric study of surfactant-induced drag-reduction by DNS, Int. J. Heat Fluid Flow. 27 (2006) 887–894. https://doi.org/10.1016/j.ijheatfluidflow.2006.03.013.
  • [15] M. Hellsten, Drag-reducing surfactants, J. Surfactants Deterg. 5 (2002) 65–70. https://doi.org/10.1007/s11743-002-0207-z.
  • [16] H.A. Abdulbari, E. Faraj, J. Gimbun, W.K. Mahmood, Energy dissipation reduction using similarly-charged polymer-surfactant complex, Adv. Appl. Fluid Mech. 18 (2015) 113–128. https://doi.org/10.17654/AAFMJul2015_113_128.
  • [17] J.W. Hoyt, Drag Reduction by Polymers and Surfactants, in: Viscous Drag Reduct. Bound. Layers, American Institute of Aeronautics and Astronautics, Washington DC, 1990: pp. 413–432. https://doi.org/10.2514/5.9781600865978.0413.0432.
  • [18] H. Suzuki, T. Itotagawa, Y.S. Indartono, H. Usui, N. Wada, Rheological characteristics of trimethylolethane hydrate slurry treated with drag-reducing surfactants, Rheol. Acta. 46 (2006) 287–295. https://doi.org/10.1007/s00397-006-0119-x.
  • [19] Y. Gu, S. Yu, J. Mou, D. Wu, S. Zheng, Research progress on the collaborative drag reduction effect of polymers and surfactants, Materials (Basel). 13 (2020) 444. https://doi.org/10.3390/ma13020444.
  • [20] L. Xing, Y. Ke, X. Hu, P. Liang, Preparation and solution properties of polyacrylamide-based silica nanocomposites for drag reduction application, New J. Chem. 44 (2020) 9802–9812. https://doi.org/10.1039/c9nj05583e.
  • [21] H.A. Abdul Bari, K.H. Hamad, R. Bin Mohd Yunus, Cocoa husk waste mucilage as new flow improver in pipelines, in: Defect Diffus. Forum, 2011: pp. 1063–1067. https://doi.org/10.4028/www.scientific.net/DDF.312-315.1063.
  • [22] H.A.A. Bari, M.A. Ahmad, R. Bin, M. Yunus, Experimental study on the reduction of pressure drop of flowing water in horizontal pipes using paddy husk fibers, Can. J. PURE Appl. Sci. 4 (2010) 1221–1225.
  • [23] M.S.N. Kazi, G.G. Duffy, X.D. Chen, Heat transfer in the drag reducing regime of wood pulp fibre suspensions, Chem. Eng. J. 73 (1999) 247–253. https://doi.org/10.1016/S1385-8947(99)00047-9.
  • [24] I.C.F. Moraes, L.H. Fasolin, R.L. Cunha, F.C. Menegalli, Dynamic and steady-shear rheological properties of xanthan and guar gums dispersed in yellow passion fruit pulp (Passiflora edulis f. flavicarpa), Brazilian J. Chem. Eng. 28 (2011) 483–494. https://doi.org/10.1590/S0104-66322011000300014.
  • [25] S. Gharehkhani, H. Yarmand, M.S. Goodarzi, S.F.S. Shirazi, A. Amiri, M.N.M. Zubir, K. Solangi, R. Ibrahim, S.N. Kazi, S. Wongwises, Experimental investigation on rheological, momentum and heat transfer characteristics of flowing fiber crop suspensions, Int. Commun. Heat Mass Transf. 80 (2017) 60–69. https://doi.org/10.1016/j.icheatmasstransfer.2016.11.013.
  • [26] S.N.B. Kamarulizam, H.A.A. Bari, N. Arumugam, Studying the potential of slag waste particle as suspended solid drag reducing agent, in: 2011 IEEE 3rd Int. Conf. Commun. Softw. Networks, ICCSN 2011, IEEE, 2011: pp. 323–327. https://doi.org/10.1109/ICCSN.2011.6014905.
  • [27] H.A. Abdul Bari, R.B.M. Yunus, T.S. Hadi, Aluminum powder and zwitrionic surfactants as drag reducing agents in pipe lines, Am. J. Appl. Sci. 7 (2010) 1310–1316. https://doi.org/10.3844/ajassp.2010.1310.1316.
  • [28] R.P. Singh, S.K. Jai, N. Lan, Drag reduction, flocculation and rheological characteristics of grafted polysaccharides, Polym. Sci. Contemp. Themes. (1991) 716.
  • [29] J.I. Sohn, C.A. Kim, H.J. Choi, M.S. Jhon, Drag-reduction effectiveness of xanthan gum in a rotating disk apparatus, Carbohydr. Polym. 45 (2001) 61–68. https://doi.org/10.1016/S0144-8617(00)00232-0.
  • [30] S.P. Cai, Y. Higuchi, Drag-reduction behavior of an unusual nonionic surfactant in a circular pipe turbulent flow, J. Hydrodyn. 26 (2014) 400–405. https://doi.org/10.1016/S1001-6058(14)60045-7.
  • [31] H. Zhu, J. Jing, J. Chen, Simulation analysis of drag-reduction characteristics of heavy oil flow by aqueous-base foam, in: ICPTT 2011 Sustain. Solut. Water, Sewer, Gas, Oil Pipelines - Proc. Int. Conf. Pipelines Trenchless Technol. 2011, American Society of Civil Engineers, Reston, VA, 2011: pp. 502–511. https://doi.org/10.1061/41202(423)56.
  • [32] E.O. Akindoyo, H.A. Abdulbari, Investigating the drag reduction performance of rigid polymer-Carbon nanotubes complexes, J. Appl. Fluid Mech. 9 (2016) 1041–1049. https://doi.org/10.18869/acadpub.jafm.68.228.24332.
  • [33] K.S. Sokhal, D. Gangacharyulu, V.K. Bulasara, Effect of guar gum and salt concentrations on drag reduction and shear degradation properties of turbulent flow of water in a pipe, Carbohydr. Polym. 181 (2018) 1017–1025. https://doi.org/10.1016/j.carbpol.2017.11.04
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80f02fd1-f08b-4188-9451-c5a627cdd196
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.