Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, the 316L austenitic steel based milled and sintered composites with 0.33 wt% and 1 wt% SiC ultra-fine particles addition have been prepared. The high efficient attrition milling provided an efficient size reduction of the 316L steel grains and homogeneous distribution of the SiC nanoparticles before sintering process. Spark plasma sintering (SPS) was used for compaction of milled powder mixtures. The effect of SiC addition on the milling efficiency and the structure of the composites have been studied. It was found that the amount of ceramic addition did not influence the efficiency of milling process, powder mixtures with flake like grains have been obtained. On the other hand, the intensive milling assured an optimal coverage of 316L stainless steel grains with submicron sized ceramic particles in both cases. The sintered composites showed high densities with the presence of small amount of closed porosities. Structural, mechanical and tribological examinations of 316L/SiC composites have been performed and presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1519--1526
Opis fizyczny
Bibliogr. 22 poz., fot., rys.
Twórcy
autor
- Óbuda University, Doctoralschool of Materials Science and Technologies, Bécsi Str. 96/B, Budapest, Hungary
- Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. Str. 29-33, Budapest, Hungary
autor
- Istanbul Technical University, Department of Metallurgical and Materials Engineering, Maslak, Istanbul 34469, Turkey
autor
- Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. Str. 29-33, Budapest, Hungary
autor
- Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. Str. 29-33, Budapest, Hungary
autor
- Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. Str. 29-33, Budapest, Hungary
Bibliografia
- [1] Jyotsna Dutta Majumdar et al., Trib. Inter. 42, 750-753 (2009).
- [2] Jinhua Yang et al., Materials and Design 52, 179-189 (2013).
- [3] Amol B. Kale et al., Mat. Sci. & Eng. A 707, 362-372 (2017).
- [4] Nabeel Jahanzeb et al., Mat. Sci. & Eng. A 700, 338-350 (2017).
- [5] Kwangjae Park et al., Mat. Sci. & Eng. A 691, 8-15 (2017).
- [6] Chao Tan et al., Fusion Eng. and Des. 125, 171-177 (2017).
- [7] Chao Tan et al., J. of Nucl. Mat. 469, 32-38 (2016).
- [8] Ankur K. Agrawal, Aparna Singh, Mat. Sci. & Eng. A 687, 306-312 (2017).
- [9] Jenő Gubicza et al., Mat. Sci. & Eng. A 657, 215-223 (2016).
- [10] Farid Akhtar et al., J. of Alloys and Comp. 509, 8794-8797 (2011).
- [11] Akhtar Farid et al., Mat. Sci. and Eng. A 472, 324-331 (2008).
- [12] N. Kurgan, R. Varol, Powder Techn. 201, 242-247 (2010).
- [13] K. Saeidi et al., Mat. and Design 135, 1-8 (2017).
- [14] J. Won Oh et al., Powder Technology 322, 1-8 (2017).
- [15] K. Verhiest et al., J. of Nucl. Mat. 428, 54-64 (2012).
- [16] M. Rafi Raza et al., J. of Mat. Proc. Techn. 212, 164-170 (2012).
- [17] Zhao Shuming et al., Optics and Laser Techn. 103, 239-250 (2018).
- [18] Bandar Al Mangour et al., Mat. and Design 104, 141-151 (2016).
- [19] Bandar Al Mangour et al., Mat. and Design 138, 119-128 (2018).
- [20] Bandar Al Mangour et al., J. of Alloys and Comp. 706, 409-418 (2017).
- [21] Xinwei Li et al., Mat. and Design 145, 1-10 (2018).
- [22] Dandan Guan et al., Vacuum 148, 319-326 (2018)
Uwagi
EN
Mr. Haroune Rachid Ben Zine thanks to Hungaricum Stipendium and MTA EK project “Nanostructural ODS steel development” for support. The authors acknowledge the excellent contribution to Zsolt E. Horváth, and Ákos Horváth to the experimental and evaluation. Thanks are due to Hungarian-Japanese Bilateral project „Development of electromagnetic non-destructive evaluation method for aging degradation of chromium steels at high temperatures”.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80e8d87c-db98-4532-b94c-2add59e0f5d4