Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fibre-metal laminates combine both the properties of metal and composite materials, reinforced with fibres; first such laminates already appeared at the end of the 70s. Alongside with the emergence of spacecraft, in which the external plating heats up to temperatures even exceeding 3000 °C, there was a demand for new materials, with increased thermal resistance. Moreover, high thermal resistance is also required in the construction of different protective casings for sensitive equipment, e.g. flight data recorders. In order to protect a spacecraft from massive amounts of heat This article presents research findings, aimed at determining the influence of including metal reinforcement in the form of steel sheet upon the thermal resistance of a multi-layered polymer composite. The samples were exposed to a mixture of hot gases at a temperature of over 900 °C for a period of approximately 150 s. The most important parameter determined on the basis of experimental research was the temperature of the rear surface of the sample. It was observed, that the addition of metal reinforcement causes stabilization of the temperature of the back wall of the sample and a decrease in temperature of the rear wall surface of the insulating sample by approximately 45% and approximately 2-fold increase in the ablative mass loss.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
111--119
Opis fizyczny
Bibliogr. 38 poz., fig., tab
Twórcy
autor
- Polish Air Force University, ul. Dywizjonu 303 35, 08-521 Dęblin, Poland
autor
- Polish Air Force University, ul. Dywizjonu 303 35, 08-521 Dęblin, Poland
autor
- Polish Air Force University, ul. Dywizjonu 303 35, 08-521 Dęblin, Poland
Bibliografia
- 1. Korzec I., Samborski S., Łusiak, T. A Study on Mechanical Strength and Failure of Fabric Reinforced Polymer Composites. Advances in Science and Technology Research Journal 2022; 16(2): 120–130. doi:10.12913/22998624/146686.
- 2. Adamski M. Use of Construction Materials in Unmanned Aerial Vehicles. Journal of Kones Powertrain and Transport 2016; 23(3): 11–18.
- 3. Sinmazçelik T., Egemen E., Özgür Bora M., Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Materials and Design 2011; 32: 3671–3685.
- 4. Lee D.S., Morillo C., Oller S., Bugeda G., Ońate E. Robust design optimisation of advance hybrid (fiber–metal) composite structures. Composite Structures 2013; 99; 181–192.
- 5. Noor M.F., Pasha R.A., WakeelA., Nasir M.A., Bilal Y. Effect of Thermal Cycling on the Tensile Behavior of CF/AL Fiber Metal Laminates. Advances in Science and Technology Research Journal 2017; 11(3): 80–86. DOI: 10.12913/22998624/73820.
- 6. Vogelesang L.B., Vlot A. Development of fibre metal laminates for advanced aerospace structures. Journal of Materials Processing Technology 2000; 103.
- 7. Vlot A., Gunnink J.W. Fibre Metal Laminates: An Introduction. Kluwer Academic Publishers, Dordrecht 2001.
- 8. Kooj H., Pilato L.A. Thermal properties and microstructures of polymer nanostructured materials, Nanoengineering of structural, functional, and smart materials. Taylor&Francis, 2006.
- 9. Jurkowski B., Rydarowski H. Materiały polimerowe o obniżonej palności. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – Państwowego Instytutu Badawczego w Radomiu 2012.
- 10. Polak Z., Rypulak A. Awionika przyrządy i systemy pokładowe. WSOSP, Dęblin 2002.
- 11. TSO-C124b, Flight data recorder systems, Appendix 1. FAA standards for crash protected enclosures.
- 12. Przybyłek P., Opara T., Kucharczyk W. Możliwości zwiększenia odporności cieplnej rejestratorów lotniczych poprzez zastosowanie osłon z polimerowych kompozytów ablacyjnych. Journal of Aeronautica Integra 2011; 2(9); 50–56.
- 13. Kucharczyk W., Przybyłek P., Opara T.A. Investigation of the thermal protection ablative properties of thermosetting composites with powder fillers: the corundum Al2O3 and the carbon powder C. Polish Journal of Chemical Technology 2013; 15(4): 49–53. DOI: 10.2478/pjct-2013–0067.
- 14. Bakar M., Kucharczyk W., Stawarz S. Investigation of thermal and ablative properties of modified epoxy resins. Polymers & Polymer Composites 2016; 24(8): 617–623.
- 15. Patel R.P., Purohit N.S., Suthar A.M. An Overview of Silica Aerogels. International Journal of ChemTech Research 2009; 1(4): 1052–1057.
- 16. Thapliyal P.C., Singh K. Aerogels as Promising Thermal Insulating Materials: An Overview. Journal of Materials 2014; 127049. DOI: 10.1155/2014/127049.
- 17. Krzyzak A., Kucharczyk W., Gaska J., Szczepaniak R. Ablative test of composites with epoxy resin and expanded perlite. Composite Structures 2018; 202: 978–987. DOI: 10.1016/j.compstruct.2018.05.018.
- 18. Bahramian A.R., Kokabi M., Famili M.H.N., Beheshty M.H. Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin; process modelling and experimental. Polymer 2006; 47: 3661–3673.
- 19. Bahramian A.R., Kokabi M. Ablation mechanism of polymer layered silicate nanocomposite heat shield. Journal of Hazardous Materials 2009; 166(1): 445–454. https://doi.org/10.1016/j.jhazmat.2008.11.061.
- 20. Krenkel W., Berndt F. C/C–SiC composites for space applications and advanced friction systems. Material Science and Engineering A 2005; 412(1–2): 177–81.
- 21. Krenkel W., Hausherr J.M., Reimer T., Friess M. Design manufacture and quality assurance of C/C–SiC composites for space transportation systems. Ceramic Engineering and Science Proceedings 2004; 25(4): 49–58.
- 22. Ma H., Zheng X., Luo X., Yi Y., Yang F. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction. Materials 2018; 11: 214. DOI: 10.3390/ma11020214.
- 23. Beaudet J., Benoit G., Cormier J., Dragon A., Rollin M. Ablation properties of C fibers and SiC fibers reinforced glass ceramic matrix composites upon oxyacetylene torch exposure. Materials Sciences and Applications 2011; 2: 1399–1406.
- 24. Cheng H., Xue H., Hong C.H., Zhang X. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird’s nest structure. Composites Sciences and Technology 2010; 140: 63–72. https://doi.org/10.1016/j.compscitech.2016.12.031.
- 25. Nabipour H., Nie S., Wang X., Song L., Hu Y. Zeolitic imidazolate framework-8/polyvinyl alcohol hybrid aerogels with excellent flame retardancy. Composites Part A 2020; 129: 105720. https://doi.org/10.1016/j.compositesa.2019.105720.
- 26. Szczepaniak R., Kozun G., Przybylek P., Komorek A., Woroniak G. The effect of the application of a powder additive of a phase change material on the ablative properties of a hybrid composite. Composite Structures 2021; 256: 113041. https://doi.org/10.1016/j.compstruct.2020.113041.
- 27. Alagar M., Ashok Kumar A., Mahesh K.P.O, Dinakaran K. Studies on thermal and morphological characteristics of E-glass/Kevlar 49 reinforced siliconized epoxy composites. European Polymer Journal 2000; 36: 2449–2454. http://dx.doiorg/10.1016/S0014–3057(00)00038–0.
- 28. Minkook K., Jaeheon C., Dai Gil L. Development of the fire-retardant sandwich structure using an aramid/glass hybrid composite and a phenolic foam-filled honeycomb. Composite Structures 2016; 158: 227–234. http://dx.doi.org/10.1016/j.compstruct.2016.09.029.
- 29. Kucharczyk W., Opara T., Kula P. Wybrane właściwości cieplne polimerowych kompozytów ablacyjnych. Kompozyty 2009; 2.
- 30. Kucharczyk W. Ablative and abrasive wear of phenolic-formaldehyde glass laminates with powder fillers. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2012; 1(14) 12–18.
- 31. Przybyłek P., Kucharczyk W. Możliwości zastosowania kompozytów ablacyjnych na osłony rejestratorów lotniczych. Logistyka 2010; 6.
- 32. Przybyłek P., Opara T., Kucharczyk W. Możliwości zwiększenia odporności cieplnej rejestratorów lotniczych poprzez zastosowanie osłon z polimerowych kompozytów ablacyjnych. Journal of Aeronautica Integra 2/2011 (9), 50–56.
- 33. Przybyłek P., Opara T., Kucharczyk W. Kompozyty polimerowe jako osłony cieplne rejestratorów lotniczych. Przetwórstwo Tworzyw 2013; 4(153): 365–369.
- 34. Bahramian A.R. Effect of external heat flux on the thermal diffusivity and ablation performance of carbon fiber reinforced novolac resin composite. Iranian Polymer Journal 2013; 22; 579–589.
- 35. Bai Z., Li X. Numerical Simulation of Thermal Response and Ablation Behavior of a Hybrid Carbon/Carbon Composite. Applied Composite Materials 2018; 25(3): 675–688. DOI: 10.1007/s10443–017–9645–1.
- 36. Peng L.N., He G.Q., Li J., Wang, L., Fei, Q. Effect of combustion gas mass flow rate on carbon/carbon composite nozzle ablation in a solid rocket motor. Carbon 2012; 50(4): 1554–1562. DOI: 10.1016/j.carbon.2011.11.034.
- 37. Sanghoon L., Jerin J., Gisu P., Jae K. Numerical and Experimental Study of the Effects of Surface Temperature and Oxygen Mass Flux on the Ablation of Carbon–Carbon Composites. Applied Composite Materials 2021; 28(2): 529–557. DOI:10.1007/s10443–021–09876–0.
- 38. Szczepaniak R., Przybyłek P., Komorek A., Szczepaniak S., Rudzki R. Analysis of modelling capabilities of ablative fire-proof properties in polymer fibre composites in conjunction with the metal. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering, MCM 2015, Barcelona, Espania 2015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80e0dffb-a1ab-42c4-9c83-b9dd949d999f