PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow structures in asymmetric compound channels with emergent vegetation on divergent floodplain

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Knowledge and management of hydraulic processes including flow pattern, sediment transport, and food level prediction in natural rivers require proper understanding of interactions between food flow and vegetation in floodplains. This study examined the flow structures and turbulence parameters in an asymmetric non-prismatic compound channel with different vegetation densities in divergent floodplain. Due to existence of vegetation, the bed shear stresses in the middle and end of the divergence floodplain decrease 78.5% and 86%, respectively. Also, the depth-averaged velocity in vegetated floodplain diminishing by about 60% and 69%. The results revealed that the production and dissipation of Reynolds shear stresses and the formed shear layer depend on the vortex shedding frequency formed behind each single rod and is very unstable. Finally, some equations were presented to estimate friction factor based on rod Reynolds number, calculate the frequency of the vortices generated behind the elements and the local drag coefficient.
Czasopismo
Rocznik
Strony
2403--2421
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • College of Agriculture and Natural Resources, Water Engineering Department, Lorestan University, Lorestan, Iran
  • College of Agriculture and Natural Resources, Water Engineering Department, Lorestan University, Lorestan, Iran
  • College of Agriculture and Natural Resources, Water Engineering Department, Lorestan University, Lorestan, Iran
  • College of Agriculture and Natural Resources, Water Engineering Department, Lorestan University, Lorestan, Iran
  • Department of Civil and Environmental Engineering, St. Augustine, Trinidad
Bibliografia
  • 1. Ahmad M, Ghani U, Anjum N, Pasha GA, Ullah MK, Ahmed A (2020) Investigating the flow hydrodynamics in a compound channel with layered vegetated floodplains. Civil Eng J 6(5):860–876. https://doi.org/10.28991/cej-2020-03091513
  • 2. Barrios-Piña H, Ramírez-León H, Rodríguez-Cuevas C, Couder-Castañeda C (2014) Multilayer numerical modeling of flows through vegetation using a mixing-length turbulence model. Water 6(7):2084–2103. https://doi.org/10.3390/w6072084
  • 3. Bousmar D, Zech Y (1999) Momentum transfer for practical flow computation in compound channels. J Hydraul Eng 125(7):696–706. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:7(696)
  • 4. Bousmar D, Zech Y (2004) Velocity distribution in non-prismatic compound channels. In: Proceedings of the Institution of Civil Engineers-water management, 157(2): 99–108 https://doi.org/10.1680/wama.2004.157.2.99
  • 5. Bousmar D, Wilkin N, Jacquemart JH, Zech Y (2004) Overbank flow in symmetrically narrowing floodplains. J Hydraul Eng 130(4):305–312. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:4(305)
  • 6. Bousmar D (2002) Flow modelling in compound channels. Momentum transfer between main channel and prismatic or non-prismatic floodplains. PhD thesis, Unité de Génie Civil et Environnemental, 12: 326
  • 7. Das BS, Khatua KK (2018) Flow resistance in a compound channel with diverging and converging floodplains. J Hydraul Eng 144(8):04018051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001496
  • 8. Das BS, Khatua KK (2019) Water surface profile computation for compound channel having diverging floodplains. ISH J Hydraul Eng 25(3):336–349. https://doi.org/10.1080/09715010.2018.1426056
  • 9. Dean RG, Dalrymple RA (1984) Water wave mechanics for engineers and scientists. In Unknown Host Publication Title, Prentice-Hall Inc
  • 10. Devi, K., Das, B. S., Khuntia, J. R., and Khatua, K. K. 2018. Analytical solution of non-uniform flow in compound channel. In: E3S web of conferences, 40: 06041. https://doi.org/10.1051/e3sconf/20184006041
  • 11. Dupuis V, Proust S, Berni C, Paquier A, Thollet F (2015) Open-channel flow over longitudinal roughness transition from highly submerged to emergent vegetation. E-proceedings of the 36th IAHR World Congress,28 June–3 July, The Hague, The Netherlands
  • 12. Dupuis V, Proust S, Berni C, Paquier A (2017) Mixing layer development in compound channel flows with submerged and emergent rigid vegetation over the floodplains. Exp Fluids 58(4):30. https://doi.org/10.1007/s00348-017-2319-9
  • 13. Fatima J, Yamamoto H, Hasegawa F, Kawahara Y (2010) Experimental and numerical analysis of open channel flows with submerged and emergent vegetations. Annu J Hydraul Eng JSCE 54:169–174
  • 14. Gao G, Falconer RA, Lin B (2011) Modelling open channel flows with vegetation using a three-dimensional model. J Water Res Prot 3(02):114. https://doi.org/10.4236/jwarp.2011.32013
  • 15. Ghisalberti M, Nepf HM (2004) The limited growth of vegetated shear layers. Water Resour Res. https://doi.org/10.1029/2003WR002776
  • 16. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)
  • 17. Hamidifar H, Omid MH, Keshavarzi A (2016) Kinetic energy and momentum correction coefficients in straight compound channels with vegetated floodplain. J Hydrol 537:10–17. https://doi.org/10.1016/j.jhydrol.2016.03.024
  • 18. Jafari A, Ghomeshi M, Bina M, Kashefipour SM (2011) A new equation for simulating strouhal number of wave frequency due to flow passing through cylinder obstacles. Irrig Sci Eng (JISE) 34(1):45–54
  • 19. James CS, Birkhead AL, Jordanova AA, O’sullivan JJ (2004) Flow resistance of emergent vegetation. J Hydraul Res 42(4):390–398. https://doi.org/10.1080/00221686.2004.9641206
  • 20. Jing H, Li C, Guo Y, Xu W (2011) Numerical simulation of turbulent flows in trapezoidal meandering compound open channels. Int J Numer Methods Fluids 65(9):1071–1083. https://doi.org/10.1002/fld.2229
  • 21. Keulegan, G. H. 1938. Laws of turbulent flow in open channels (vol 21, pp 707–741). US: National Bureau of Standards
  • 22. Knight DW, Demetriou JD (1983) Flood plain and main channel flow interaction. J Hydraul Eng 109(8):1073–1092. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:8(1073)
  • 23. Knight DW, Hamed ME (1984) Boundary shear in symmetrical compound channels. J Hydraul Eng 110(10):1412–1430. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1412)
  • 24. Knight DW, Shiono K (1990) Turbulence measurements in a shear layer region of a compound channel. J Hydraul Res 28(2):175–196. https://doi.org/10.1080/00221689009499085
  • 25. Koftis T, Prinos P (2018) Reynolds stress modelling of flow in compound channels with vegetated floodplains. J Appl Water Eng Res 6(1):17–27. https://doi.org/10.1080/23249676.2016.1209437
  • 26. Kothyari UC, Hayashi K, Hashimoto H (2009) Drag coefficient of unsubmerged rigid vegetation stems in open channel flows. J Hydraul Res 47(6):691–699. https://doi.org/10.3826/jhr.2009.3283
  • 27. Lu S, Chen J (2014) Effects of rigid vegetation on the turbulence characteristics in sediment-laden flows. J Appl Math Phys 2(12):1091–1098. https://doi.org/10.4236/jamp.2014.212126
  • 28. Mulahasan S, Stoesser T, McSherry R (2017) Effect of floodplain obstructions on the discharge conveyance capacity of compound channels. J Irrig Drain Eng 143(11):04017045. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001240
  • 29. Musleh FA, Cruise JF (2006) Functional relationships of resistance in wide flood plains with rigid unsubmerged vegetation. J Hydraul Eng 132(2):163–171. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(163)
  • 30. Naik B, Khatua KK, Padhi E, Singh P (2018) Loss of energy in the converging compound open channels. Arab J Sci Eng 43(10):5119–5127. https://doi.org/10.1007/s13369-017-2963-7
  • 31. Pasche E, Rouvé G (1985) Overbank flow with vegetatively roughened flood plains. J Hydraul Eng 111(9):1262–1278. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:9(1262)
  • 32. Pasche E (1984) Turbulence mechanism in natural streams and the possibility of its mechanical representation. Mitteilungen Institut für Wasserbau and Wasserwirtschaft, (52)
  • 33. Proust S, Riviere N, Bousmar D, Paquier A, Zech Y, Morel R (2006) Flow in compound channel with abrupt floodplain contraction. J Hydraul Eng 132(9):958–970. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:9(958)
  • 34. Rameshwaran P, Shiono K (2007) Quasi two-dimensional model for straight overbank flows through emergent. J Hydraul Res 45(3):302–315. https://doi.org/10.1080/00221686.2007.9521765
  • 35. Rezaei B, Knight DW (2009) Application of the Shiono and Knight Method in compound channels with non-prismatic floodplains. J Hydraul Res 47(6):716–726. https://doi.org/10.3826/jhr.2009.3460
  • 36. Rezaei B, Knight DW (2011) Overbank flow in compound channels with nonprismatic floodplains. J Hydraul Eng 137(8):815–824. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000368
  • 37. Roshko A (1954) A new hodograph for free-streamline theory
  • 38. Sanjou M, Nezu I (2011) Turbulence structure and concentration exchange property in compound open-channel flows with emergent trees on the floodplain edge. Int J River Basin Manag 9(3–4):181–193. https://doi.org/10.1080/15715124.2011.584511
  • 39. Sanjou M, Nezu I, Suzuki S, Itai K (2010) Turbulence structure of compound open-channel flows with one-line emergent vegetation. J Hydrodyn 22(1):560–564. https://doi.org/10.1016/S1001-6058(09)60255-9
  • 40. Sarkar A (2012) Vortex-excited transverse surface waves in an array of randomly placed circular cylinders. J Hydraul Eng 138(7):610–618. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000557
  • 41. Schlichting H (1968) Boundary layer theory, vol 960. McGraw-Hill, New York
  • 42. Sellin RHJ (1964) A laboratory investigation into the interaction between the flow in the channel of a river and that over its floodplain. La Houille Blanche 7:793–802. https://doi.org/10.1051/lhb/1964044
  • 43. Shiono K, Knight DW (1991) Turbulent open-channel flows with variable depth across the channel. J Fluid Mech 222:617–646. https://doi.org/10.1017/S0022112091001246
  • 44. Singh P, Naik B, Tang X, Khatua KK, Kumar A, Banerjee S (2019) Models for kinetic energy and momentum correction coefficients for non-prismatic compound channels using regression and gene expression programming. SN Appl Sci. https://doi.org/10.1007/s42452-019-1222-9
  • 45. Sonnenwald F, Stovin V, Guymer I (2019) Estimating drag coefficient for arrays of rigid cylinders representing emergent vegetation. J Hydraul Res 57(4):591–597. https://doi.org/10.1080/00221686.2018.1494050
  • 46. Stoesser T, Kim SJ, Diplas P (2010) Turbulent flow through idealized emergent vegetation. J Hydraul Eng 136(12):1003–1017. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000153
  • 47. Sun X, Shiono K (2009) Flow resistance of one-line emergent vegetation along the floodplain edge of a compound open channel. Adv Water Resour 32(3):430–438. https://doi.org/10.1016/j.advwatres.2008.12.004
  • 48. Sun X, Shiono K, Fu XY, Yang KJ, Huang TL (2013) Application of Shiono and Knight method to compound open channel flow with one-line emergent vegetation. Adv Mater Res 663:930–935. https://doi.org/10.4028/www.scientific.net/AMR.663.930
  • 49. Takemura T, Tanaka N (2007) Flow structures and drag characteristics of a colony-type emergent roughness model mounted on a flat plate in uniform flow. Fluid Dynam Res 39(9–10):694. https://doi.org/10.1016/j.fluiddyn.2007.06.001
  • 50. Tang X, Knight DW (2009) Lateral distributions of streamwise velocity in compound channels with partially vegetated floodplains. Sci China Ser E Technol Sci 52(11):3357–3362. https://doi.org/10.1007/s11431-009-0342-7
  • 51. Tang X, Knight DW, Sterling M (2011) Analytical model for streamwise velocity in vegetated channels. Proc Inst Civil Eng-Eng Comput Mech 164(2):91–102. https://doi.org/10.1680/eacm.2011.164.2.91
  • 52. Terrier B, Robinson S, Shiono K, Paquier A, Ishigaki T (2010) Influence of vegetation to boundary shear stress in open channel for overbank flow. River Flow 2010:285–292
  • 53. Terrier B (2010) Flow characteristics in straight compound channels with vegetation along the main channel (Doctoral dissertation, Loughborough University)
  • 54. Tominaga A, Nezu I (1991) Turbulent structure in compound open-channel flows. J Hydraul Eng 117(1):21–41. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:1(21)
  • 55. Västilä K, Järvelä J, Koivusalo H (2016) Flow–vegetation–sediment interaction in a cohesive compound channel. J Hydraul Eng 142(1):04015034. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001058
  • 56. Wang WJ, Peng WQ, Huai WX, Katul GG, Liu XB, Qu XD, Dong F (2019) Friction factor for turbulent open channel flow covered by vegetation. Scientific Rep 9(1):1–16. https://doi.org/10.1038/s41598-019-41477-7
  • 57. Yang JQ, Nepf HM (2019) Impact of vegetation on bed load transport rate and bedform characteristics. Water Resour Res 55(7):6109–6124. https://doi.org/10.1029/2018WR024404
  • 58. Yang K, Cao S, Knight DW (2007) Flow patterns in compound channels with vegetated floodplains. J Hydraul Eng 133(2):148–159. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:2(148)
  • 59. Yang K, Nie R, Liu X, Cao S (2013) Modeling depth-averaged velocity and boundary shear stress in rectangular compound channels with secondary flows. J Hydraul Eng 139(1):76–83. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000638
  • 60. Yonesi HA, Omid MH, Ayyoubzadeh SA (2013) The hydraulics of flow in non-prismatic compound channels. J Civil Eng Urban 3(6):342–356
  • 61. Zdravkovich MM (1987) The effects of interference between circular cylinders in cross flow. J Fluids struct 1(2):239–261. https://doi.org/10.1016/S0889-9746(87)90355-0
  • 62. Zhang M, Jiang C, Huang H, Nanson GC, Chen Z, Yao W (2017) Analytical models for velocity distributions in compound channels with emerged and submerged vegetated floodplains. Chin Geogr Sci 27(4):577–588. https://doi.org/10.1007/s11769-017-0888-4
  • 63. Zhao K, Cheng NS, Huang Z (2014) Experimental study of free-surface fluctuations in open-channel flow in the presence of periodic cylinder arrays. J Hydraul Res 52(4):465–475. https://doi.org/10.1080/00221686.2014.880858
  • 64. Zong L, Nepf H (2010) Flow and deposition in and around a finite patch of vegetation. Geomorphology 116(3–4):363–372. https://doi.org/10.1016/j.geomorph.2009.11.020
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80e0d6b0-2fc7-43ec-9a94-8dbca6ba91b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.