Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Unmanned aerial vehicles are increasingly being used in close range photogrammetry. Real-time observation of the Earth’s surface and the photogrammetric images obtained are used as material for surveying and environmental inventory. The following study was conducted on a small area (approximately 1 ha). In such cases, the classical method of topographic mapping is not accurate enough. The geodetic method of topographic surveying, on the other hand, is an overly precise measurement technique for the purpose of inventorying the natural environment components. The author of the following study has proposed using the unmanned aerial vehicle technology and tying in the obtained images to the control point network established with the aid of GNSS technology. Georeferencing the acquired images and using them to create a photogrammetric model of the studied area enabled the researcher to perform calculations, which yielded a total root mean square error below 9 cm. The performed comparison of the real lengths of the vectors connecting the control points and their lengths calculated on the basis of the photogrammetric model made it possible to fully confirm the RMSE calculated and prove the usefulness of the UAV technology in observing terrain components for the purpose of environmental inventory. Such environmental components include, among others, elements of road infrastructure, green areas, but also changes in the location of moving pedestrians and vehicles, as well as other changes in the natural environment that are not registered on classical base maps or topographic maps.
Wydawca
Czasopismo
Rocznik
Tom
Strony
89--104
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Adam Mickiewicz University in Poznań Department of Cartography and Geomatics 10 Bogumiła Krygowskiego St., 61-680 Poznań
autor
- Adam Mickiewicz University in Poznań Department of Cartography and Geomatics 10 Bogumiła Krygowskiego St., 61-680 Poznań
Bibliografia
- [1] Ahmad, A. (2011). Digital Mapping Using Low Altitude UAV. Pertanika Journal of Science and Technology 19(S), 51–58.
- [2] Ahmad, A. and Samad, A. (2010). Aerial Mapping using High Resolution Digital Camera and Unmanned Aerial Vehicle for Geographical Information System. 6th International Colloquium on Signal Processing & its Applications, DOI: 10.1109/CSPA.2010.5545303.
- [3] Anai, T., Sasaki, T., Osaragi, K., Yamada, M., Otomo F., and Otani, H. (2012). Automatic Exterior Orientation Procedure for Low-Cost Uav Photogrammetry Using Video Image Tracking Technique and Gps Information. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7(September), 469–474. DOI: 10.5194/isprsarchives-XXXIX-B7-469-2012, 2012.
- [4] Barazzetti, L., Remondino, F., Scaioni, M. and Brumana, R. (2010). Fully automatic UAV imagebased sensor orientation. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences Vol XXXVIII Part 5 Commission V Symposium, 6.
- [5] Bielecka, E. and Medyńska-Gulij B. (2015). Zur Geodateninfrastruktur in Polen. Geodata Infrastructure in Poland, Kartographische Nachrichten, 65/4:201–208.
- [6] De Kock, M. and Gallacher, D. (2016). From drone data to decision: Turning images into ecological answers. Conference paper: Innovation Arabia 9, At Dubai, UAE. DOI: 10.13140/RG.2.1.3587.8169.
- [7] Eugster, H. and Nebiker, S. (2008). Uav-Based Augmented Monitoring – Real-Time Georeferencing and Integration of Video Imagery With Virtual Globes. Archives, 37, 1229–1236.
- [8] Gallacher, D. (2015). Ecological Monitoring of Arid Rangelands using Micro-UAVs (drones) Conference paper: Sixth Health and Environment Conference, HBMsU Congress, At Dubai, UAE. DOI:10.13140/RG.2.1.3107.4002.
- [9] Geodetic and Cartographic Law, (1989). Dz.U. No 30 Item 163.
- [10] Gonçalves, J. A. and Henriques, R. (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101–111. DOI: http://doi.org/10.1016/j.isprsjprs.2015.02.009.
- [11] Halik, Ł., Lorek, D., and Medyńska-Gulij, B. (2015). Kartowanie terenowe w technologii GPS-GIS. Badania fizjograficzne, 95–103. http://doi.org/10.14746/bfg.2015.6.7.
- [12] Halik, Ł. and Medyńska-Gulij, B. (2016). The differentiation of point symbols using selected visual variables in the mobile augmented reality system, The Cartographic Journal, DOI: 10.1080/00087041.2016.1253144.
- [13] Kędzierski, M., Fryśkowska, A. and Wierzbicki, D. (2014). Opracowania fotogrametryczne z niskiego pułapu, Wojskowa Akademia Techniczna, Warszawa.
- [14] Kršák, B., Blišťan, P., Pauliková, A., Puškárová, P., Kovanič, Ľ., Palková, J., and Zelizňaková, V. (2016). Use of low-cost UAV photogrammetry to analyse the accuracy of a digital elevation model in a case study. Measurement, 91, 276–287. http://doi.org/10.1016/j.measurement.2016.05.028.
- [15] Kurczyński Z. (2014). Fotogrametria, Wyd. Nauk. PWN, Warszawa.
- [16] Medyńska-Gulij B. (2015). Kartografia. Zasady i zastosowania geowizualizacji, PWN, Warszawa.
- [17] Minister of Internal Affairs and Administration, (2011a). Technical standards of carrying out topographic surveys, processing the results of those surveys, and registering them in the National Geodetic and Cartographic Resource. Dz.U. No 63, Item 1572.
- [18] Minister of Internal Affairs and Administration, (2011b). Regulation on databases concerning aerial and satellite images as well as the orthophotomap and the numerical terrain model. Dz.U. No 263 Ithem 1571.
- [19] Nex, F., and Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15. http://doi.org/10.1007/s12518-013-0120-x.
- [20] Pérez, M., Agüera, F. and Carvajal, F. (2013). Low Cost Surveying Using an Unmanned Aerial Vehicle. International Archives of Photogrammetry and Remote Sensing, XL(September), 4–6, DOI: 10.5194/isprsarchives-XL-1-W2-311-2013.
- [21] Richling A. (2007). Podstawowe założenia badań fizycznogeograficznych. [W:] Geograficzne badania środowiska przyrodniczego, 2007, red. A.Richling, PWN Warszawa.
- [22] Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E. and Aksamitauskas, V. Č. (2015). The surfach modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619–627. http://doi.org/10.1016/j.measurement.2015.04.018.
- [23] Ryczywolski, M., Oruba, A. and Leo, M. (2008). The precise satellite positioning ASG-EUPOS. International Conference GEOS 2008 Proceedings, Prague.
- [24] Sanecki J., Stępień G., Konieczny J., Niebylski J. and Klewski A. (2016). Teledetekcja. Wykorzystanie zdalnej informacji. Szczecin. Wydawnictwo Naukowe Akademii Morskiej.
- [25] Stępień G., Sanecki, J., Klewski A. and Beczkowski, K. (2016) Wyznaczanie granic użytków rolnych z wykorzystaniem bezzałogowych systemów latających, Infrastruktura i Ekologia Terenów Wiejskich, 2: 1011-1024. DOI: 10.14597/infraeco.2016.3.2.074.
- [26] Siebert, S. and Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, 1–14. http://doi.org/10.1016/j.autcon.2014.01.004.
- [27] Smaczyński, M. (2015). Wizualizacja dynamiki zmian liczby uczestników imprezy masowej z wykorzystaniem dronów, Badania fizjograficzne, 159–171. http://doi.org/10.14746/bfg.2015.6.12.
- [28] Toutin, T. and Chénier, R. (2004). GCP requirement for high-resolution satellite mapping. XXth ISPRS Congress, 12–23.
- [29] Uysal, M., Toprak, A. S. and Polat, N. (2015). DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement: Journal of the International Measurement Confederation, 73, 539–543. http://doi.org/10.1016/j.measurement.2015.06.010.
- [30] Wang, J., Garratt, M., Lambert, A., Wang, J. J., Han, S. and Sinclair, D. (2008). Integration of Gps/Ins/Vision Sensors To Navigate Unmanned Aerial Vehicles. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1, 963–970.
- [31] Wielebski, Ł. and Medyńska-Gulij, B. (2013), Cartographic visualization of fi re hydrants accessibility for the purpose of decision making, Geodesy and Cartography. Volume 62:183-198, DOI: 10.2478/geocart-2013-0011.
- [32] Zhang, C. and Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. http://doi.org/10.1007/s11119-012-9274-5.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80dc8efe-c43a-4a25-815f-3d13537bf8c6