Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Diabetic retinopathy, a symptomless complication of diabetes, is one of the significant causes of vision impairment in the world. The early detection and diagnosis can reduce the occurrence of severe vision loss due to diabetic retinopathy. The diagnosis of diabetic retinopathy depends on the reliable detection and classification of bright and dark lesions present in retinal fundus images. Therefore, in this work, reliable segmentation of lesions has been performed using iterative clustering irrespective of associated heterogeneity, bright and faint edges. Afterwards, a computer-aided severity level detection method is proposed to aid ophthalmologists for appropriate treatment and effective planning in the diagnosis of non-proliferative diabetic retinopathy. This work has been performed on a composite database of 5048 retinal fundus images having varying attributes such as position, dimensions, shapes and color to make a reasonable comparison with state-of-the-art methods and to establish generalization capability of the proposed method. Experimental results on per-lesion basis show that the proposed method outperforms state-of-the methods with an average sensitivity/specificity/accuracy of 96.41/96.57/94.96 and 95.19/96.24/96.50 for bright and dark lesions respectively on composite database. Individual per-image based class accuracies delivered by the proposed method: No DR-95.9%, MA-98.3%, HEM-98.4%, EXU-97.4% and CWS-97.9% demonstrate the clinical competence of the method. Major contribution of the proposed method is that it efficiently grades the severity level of diabetic retinopathy in spite of huge variations in retinal images of different databases. Additionally, the substantial combined performance of these experiments on clinical and open source benchmark databases support a strong candidature of the proposed method in the diagnosis of non-proliferative diabetic retinopathy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
708--732
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
- Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India
autor
- Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India
Bibliografia
- [1] Sarah W, Gojka R, Anders G, Richard S, Hilary K. Global prevalence of diabetes: estimates for the year 2000 and projection for 2030. Diabetes Care 2004;27:1047–53.
- [2] Chu J, Ali Y. Diabetic retinopathy: a review. Drug Dev Res 2008;69:1–14.
- [3] Sjølie A, Stephenson J, Aldington S, Kohner E, Janka H, Stevens L, et al. Retinopathy and vision loss in insulin-dependent diabetes in Europe. The EURODIAB IDDM Complications Study. Ophthalmology 1997;2:252–60.
- [4] Frank RN. Diabetic retinopathy. N Engl J Med 2004;1:48–58.
- [5] Cree MJ, Olson JA, McHardy KC, Sharp PF, Forrester JV. A fully automated comparative microaneurysm digital detection system. Eye (Lond) 1997;11(Pt 5):622–8.
- [6] Spencer T, Olson JA, McHardy KC, Sharp PF, Forrester JV. An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comput Biomed Res 1996;29:284–302.
- [7] Sinthanayothin C, Boyce J, Williamson T. Automated detection of diabetic retinopathy on digital fundus images. Diabetic 2002;105–12.
- [8] Quellec G, Lamard M, Josselin PM, Cazuguel G, Cochener B, Roux C. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Trans Med Imaging 2008;27:1230–41.
- [9] Niemeijer M, Van Ginneken B, Staal J, Suttorp-Schulten MSA, Abràmoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging 2005;24:584–92.
- [10] Usher D, Dumskyj M, Himaga M, Williamson TH, Nussey S, Boyce J. Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening. Diabet Med 2004;21:84–90.
- [11] García M, López MI, Álvarez D, Hornero R. Assessment of four neural network based classifiers to automatically detect red lesions in retinal images. Med Eng Phys 2010;32:1085–93.
- [12] Seoud L, Hurtut T, Chelbi J, Cheriet F, Langlois JMP. Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging XX 2015;1.
- [13] Jaafar HF, Nandi AK, Al-Nuaimy W. Automated detection of red lesions from digital colour fundus photographs. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS); 2011. p. 6232–5.
- [14] Roychowdhury S, Koozekanani D, Parhi K. DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomed Heal Inform 2014;18:1717–28.
- [15] Usman Akram M, Khalid S, Tariq A, Khan SA, Azam F. Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 2014;45:161–71.
- [16] Kauppi T, Kämäräinen JK, Lensu L, Kalesnykiene V, Sorri I, usitalo H, et al. Constructing benchmark databases and protocols for medical image analysis: diabetic retinopathy. Comput Math Methods Med 2013;2013.
- [17] Kuivalainen M, Kälviäinen H, Kämäräinen JK. Retinal image analysis using machine vision; 2005.
- [18] Figueiredo IN, Kumar S, Oliveira CM, Ramos JD, Engquist B. Automated lesion detectors in retinal fundus images. Comput Biol Med 2015;66:47–65.
- [19] Sopharak A, Uyyanonvara B, Barman S. Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy C-means clustering. Sensors (Peterb NH) 2009;2148–61.
- [20] Osareh A, Mirmehdi M, Thomas B, Markham R. Automated identification of diabetic retinal exudates in digital colour images. Br J Ophthalmol 2003.
- [21] Niemeijer M, Van Ginneken B, Russell SR, Suttorp-Schulten MSA, Abràmoff MD. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Investig Ophthalmol Vis Sci 2007;48:2260–7.
- [22] Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin KW, et al. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 2012;16:216–26.
- [23] Sidibé D, Sadek I, Mériaudeau F. Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput Biol Med 2015;62:175–84.
- [24] Garcia M, Sánchez CI, López MI, Abásolo D, Hornero R. Neural network based detection of hard exudates in retinal images. Comput Methods Programs Biomed 2009;9–19.
- [25] Yazid H, Arof H, Isa HM. Automated identification of exudates and optic disc based on inverse surface thresholding. J Med Syst 2012;36:1997–2004.
- [26] Osareh A, Shadgar B, Markham R. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Trans Inf Technol Biomed 2009;13:535–45.
- [27] Jaafar HF, Nandi AK, Al-Nuaimy W. Detection of exudates in retinal images using a pure splitting technique. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10. 2010. pp. 6745–8.
- [28] Zhang X, Thibault G, Decenciere E, Marcotegui B, Lay B, Danno R, et al. Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med Image Anal 2014;18:1026–43.
- [29] Pires R, Jelinek HF, Wainer J, Valle E, Rocha A. Advancing bag-of-visual-words representations for lesion classification in retinal images. PLOS ONE 2014;9.
- [30] Mookiah MRK, Chua CK, Min LC, Ng EYK, Laude A. Computer aided diagnosis of diabetic retinopathy using multi-resolution analysis and feature ranking frame work. J Med Imaging Heal Inform 2013;3:598–606.
- [31] Welikala RA, Fraz MM, Dehmeshki J, Hoppe A, Tah V, Mann S, et al. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Comput Med Imaging Graph 2015;43:64–77.
- [32] Prakash NB, Selvathi D, Hemalakshmi GR. Development of algorithm for dual stage classification to estimate severity level of diabetic retinopathy in retinal images using soft computing techniques. Int J Electr Eng Inform 2014;6:717–39.
- [33] Kaur J, Mittal D. A generalized method for the detection of vascular structure in pathological retinal images. Biocybern Biomed Eng 2017;37:184–200.
- [34] Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. DRIVE: digital retinal images for vessel extraction. IEEE Trans Med Imaging 2004, http://www.isi.uu.nl/Research/Databases/DRIVE/.
- [35] Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Raninen A, et al. DIARETDB1: standard diabetic retinopathy database; 2007, http://www.it.lut.fi/project/imageret/diaretdb1/.
- [36] Messidor. Methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology; 2004, http://www.adcis.net/en/Download-Third-Party/Messidor.html.
- [37] ADCIS, n.d. e-optha: a color fundus image database. URL http://www.adcis.net/en/Download-Third-Party/E-Ophtha.html.
- [38] Goldbaum M. Structured analysis of the retina (STARE); 2000 URL http://www.ces.clemson.edu/ahoover/stare/.
- [39] Rokade PM, Manza RR. Automatic detection of hard exudates in retinal images using Haar wavelet transform. Int J Appl Innov Eng Manag 2015;4:402–10.
- [40] Kaur J, Mittal D. A generalized method for the segmentation of exudates from pathological retinal fundus images. Biocybern Biomed Eng 2018;38(1):27–53.
- [41] Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 2012;34:2274–81.
- [42] Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K. TurboPixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell 2009;31:2290–7.
- [43] Mittal D, Kumar V, Saxena SC, Khandelwal N, Kalra N. Neural network based focal liver lesion diagnosis using ultrasound images. Comput Med Imaging Graph 2011;35.
- [44] American Academy of Ophthalmology. International clinical diabetic retinopathy disease severity scale. Am Acad Ophthalmol 2002.
- [45] Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003;110:1677–82.
- [46] Dashtbozorg B, Zhang J, Huang F, ter Haar Romeny BM. Retinal microaneurysms detection using local convergence index features. IEEE Trans Image Process 2018;27(7):3300–15.
- [47] Chudzik P, Majumdar S, Calivá F, Al-Diri B, Hunter A. Microaneurysm detection using fully convolutional neural networks. Comput Methods Programs Biomed 2018;158:185–92.
- [48] Kusakunniran W, Wu Q, Ritthipravat P, Zhang J. Hard exudates segmentation based on learned initial seeds and iterative graph cut. Comput Methods Programs Biomed 2018;158:173–83.
- [49] Xiao Z, Zhang X, Geng L, Zhang F, Wu J, Tong J, et al. Automatic non-proliferative diabetic retinopathy screening system based on color fundus image. Biomed Eng Online 2017;16.
- [50] Al-Jarrah MA, Shatnawi H. Non-proliferative diabetic retinopathy symptoms detection and classification using neural network. J Med Eng Technol 2017;41:498–505.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80db5d78-2ac8-4bed-a013-bacfbee0b023