Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes an alternative approach to the dissemination of the mass unit in the context of the new definition of the kilogram. Considering the fact that redefinition allows mass to be directly realized at any value, the paper presents a model of the dissemination of mass which can be used for diferent series in grams, where the measurements are performed in the downward direction, but using 1 g as the reference standard (whose mass value is assumed to be determined after the redefinition using the capacitive or electrostatic techniques). The subdivision method presented (suitable for 𝐸1 weights) has as its starting point the approach used by Mihailov-Romanowski for the calibration of series in kilograms which uses an orthogonal system of equations. Thus, according to this method, a solution for obtaining the orthogonality of a system can be the use as defining standard of the ratio between the mass having the highest nominal value in the set and the standard (unit). The results obtained for a set of weights from 10 to 1 g using the subdivision method, in accordance with the Mihailov-Romanowski principle, are validated with those obtained with the multiplication method, where the measurements start from 1 to 10 g, as in the case of the kilogram series. The mass values obtained with both methods are equal, while the estimated uncertainties are slightly diferent, yet insignificant. The results obtained previously for the same sequence of weights using the traditional dissemination method, where the 1 kg standard is used as reference, are also presented in the paper. The results show that only three weights out of six have a mass value insignificantly diferent by 1 × 10-4 mg compared to those obtained with the methods presented in this article, but, in terms of uncertainty, there are some diferences. The way of disseminating the mass unit presented in this article can be extended to other diferent sequences of nominal values such as: (5 . . . 1) g, (20 . . . 1) g, (50 . . . 1) g or (500 . . . 100) g if the reference standard is 100 g.
Czasopismo
Rocznik
Tom
Strony
3--16
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr., wzory
Twórcy
autor
- Romanian Measurement Society - RMS, Unirii Bv. No. 61, 030828 Bucharest, Romania (formerly National Institute of Metrology, Romania)
Bibliografia
- [1] GreenfieIdboyce, N. (2018). Say Au revoir to that hunk of metal in France that has defined the kilogram. Morning Edition, NPR. https://www.npr.org/2018/11/13/666310991/say-au-revoir-to-that-hunk-of-metal-in-france-that-has-defined-the-kilogram?t=1614350263706
- [2] Bureau International des Poids et Mesures. The International System of Units (SI), https://www.bipm.org/en/measurement-units/
- [3] Schlamminger, S., Yang, I., Kumar, H. (2020). Redefinition of SI Units and Its Implications. MAPAN-Journal of Metrology Society of India, 35(3), 471-474. https://doi.org/10.1007/s12647-020-00421-1
- [4] Schlamminger, S., & Haddad, D. (2019). The Kibble balance and the kilogram. Camples Rendus Physique, 20(1-2), 55-63. https://doi.org/10.1016/j.crhy.2018.11.006
- [5] Jarvis, C., Webster, E., Davidson, S., & Robinson, I. (2019). A μ Kibble balance tor direct realisation of small-scale masses and forces. In 19th International Congress of Metrology (CIM2019) (p. 14002). EDP Sciences. https://doi.org/10.1051/metrology/201914002
- [6] Stock, M., Davidson, S., Fang, H., Milton, M., de Mirandés, E., Richard, P., & Sutton, C. (2017). Maintaining and disseminating the kilogram following its redefinition. Metrologia, 54(5), S99. https://doi.org/10.1088/1681-7575/aa8d2d
- [7] Zelenka, Z., Alisic, S.,Stoilkovska, B., Hanrahan, R., Kolozinsky, I., Popa, G., & Malengo, A. (2020). Improvement of the realisation of the mass scale. ACTA IMEKO, 9(4), 4-6. https://doi.org/10.21014/acta_imeko.v9i5.928
- [8] Mihailov, G., & Romanowski, M. (1990). Calibration of the multiples of the unit of mass. Metrologia, 27(1), 17. https://doi.org/10.1088/0026-1394/27/1/004
- [9] Morris, E. C. (1993). Decade designs for weighings of non-uniform variance. Metrologia, 29(5), 373-377. https://doi.org/10.1088/0026-1394/29/6/001
- [10] Lin. D. K., & Chang, J. Y. (2001). A note on cyclic orthogonal designs. Statistica Sinica, 549-552. https://www.jstor.org/stable/24306877
- [11] Zuker, M., Mihailov, G., & Romanowski, M. (1980). Systematic search for orthogonal systems in the calibrations of submultiples and multiples of the unit of mass. Metrologia, 16(1), 51-54. https://doi.org/10.1088/0026-1394/16/1/007
- [12] Vâlcu, A. (2007). Orthogonal Design for Calibration of Multiples of Kilogram. NCSLI Measure, 2(1), 64-67. https://doi.org/10.1080/19315775.2007.11721374
- [13] Vâlcu, A., & Boiciuc, D. (2008). Subdivision or Mulliplication? The Choice of Calibration Design for Multiples of Kilogram. Measurement Science Review, 8(1), 33-36. https://sciendo.com/pl/article/10.2478/v10048-008-0009-8
- [14] International Organization tor Standardization. (2017). General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025).
- [15] Vâlcu, A. (2001). Test procedures for class E1 weights at the Romanian National Institute of Metrology. Calibration of mass standards by subdivision of the kilogram. OIML Bulletin, 42(2), 11-16. https://www.oiml.org/en/publications/bulletin/pdf/oiml_bulletin_july_2001.pdf
- [16] Schwartz. R. (1991). Realization of the PTB's mass scale from 1 mg to 10 kg. PTB-MA-21e Braunschweig, Physikalisch-Technische Bundesanstalt.
- [17] Borys, M., Schwartz, R., Reichmuth, A., & Naler, R. (2012). Fundamentals of mass determination. Springer Science & Business Media, https://doi.org/10.1007/978-3-642-11937-8
- [18] International Organization of Legal Metrology (OIML) (2004). Weights of classes E1, E2, F1, F2, M1, M1-2, M2, M2-3 and M3 (R111 1 2004).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80db04a1-913a-44e1-a829-8d2f384a1ffe