PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards a viable method of reusing silicon carbide. Physicochemical analyses in the studies on the industrial application of the material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an investigation on the feasibility of recovery of the highly valuable silicon carbide (SiC) from the slurry waste generated from silicon wafer production in the photovoltaic and semiconductor industry. Compared to the other techniques of recycling, a facile and low-cost method of waste treatment via heat drying followed by low-energy mixing in a shaker mixer was proposed. As the result of the treatment, the slurry waste was converted into a powdered form with dominant content of SiC. Separated SiC material was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray powder diffraction, and sieve analysis. In addition, analyses of the bulk density, moisture content and melting test were carried out. As was confirmed by the physicochemical analyses, the dominant sieve fraction was in the range of 0.1-0.06 mm, the purity level was a minimum 99% mass of SiC, the moisture content - 0.3%, the bulk density - 1.3 g/cm3. The physicochemical characteristics of the material were crucial for understanding the material performance, assessment of the material quality and determining the perspective directions of the industrial application. The studies revealed that the material exhibited a high application potential as abrasive, especially in abrasive grinding and waterjet cutting.
Rocznik
Strony
43--52
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Ad Moto Rafał Zawisz, Aleja Rozdzieńskiego 188B, 40-203 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Krasińskiego 8, 40-019 Katowice, Poland
  • Ad Moto Rafał Zawisz, Aleja Rozdzieńskiego 188B, 40-203 Katowice, Poland
Bibliografia
  • [1] BELENKOV E.A., AGALYAMOVA E.N., GRESHNIKOV V.A., Classification and structure of silicon carbide phases, Phys. Solid State, 2012, 54, 433–440, DOI: 10.1134/S1063783412020072.
  • [2] LINKE B., Life cycle and sustainability of abrasive tools, Springer International Publishing, RWTH Aachen University, Aachen 2016.
  • [3] CHOI J., FTHENAKIS V., Crystalline silicon photovoltaic recycling planning: macro and micro perspectives, J. Clean. Prod., 2014, 66, 443–449, DOI: 10.1016/J.JCLEPRO.2013.11.022.
  • [4] COTTRELL A., An introduction to metallurgy, Routledge Taylor and Francis Group, New York 2019.
  • [5] SUN K., WANG T., CHEN Z., LU W., HE X., GONG W., TANG M., LIU F., HUANG Z., TANG J., CHIEN T., TAN G., FAN M., Clean and low-cost synthesis of high purity beta-silicon carbide with carbon fiber production residual and a sandstone, J. Clean. Prod., 2019, 238, 117875, DOI: 10.1016/j.jclepro.2019.117875.
  • [6] GUO J., LIU Y., LIU L., LIU, J., KONG J., WANG W., JIANG S., XING P., A low-cost and facile method to recycle silicon carbide particles from the solar grade silicon slicing wastes, Silicon, 2020, 12, 2405–2412, DOI: 10.1007/s12633-019-00334-y.
  • [7] DROUICHE N., CUELLAR P., KERKAR F., MEDJAHED S., BOUTOUCHENT-GUERFI N., HAMOU M.O., Recovery of solar grade silicon from kerf loss slurry waste, Renew. Sust. Energ. Rev., 2014, 32, 936–943, DOI: 10.1016/j.rser.2014.01.059.
  • [8] SERGIIENKO S.A., POGORELOV B.V., DANILIUK V.B., Silicon and silicon carbide powders recycling technology from wire-saw cuttin0510g waste in slicing process of silicon ingots, Sep. Purif. Technol., 2014, 133 (36), 16–21, DOI: 10.1016/j.seppur.2014.06.036.
  • [9] HACHICHI K., LAMI A., ZEMMOURI H., CUELLAR P., SONI R., AIT-AMAR, H., DROUICHE N., Silicon recovery from kerf slurry waste: a review of current status and perspective, Silicon, 2018, 10, 1579–1589, DOI: 10.1007/s12633-017-9642-x.
  • [10] SHEN Z.Y., CHEN C.Y., LEE M.T., Recovery of cutting fluids and silicon carbide from slurry waste, J. Hazard. Mater., 2019, 362, 115–123, DOI: 10.1016/j.jhazmat.2018.09.014.
  • [11] HECINIA M., TABLAOUIA M., AOUDJB S., PALAHOUANEA B., BOUCHELAGHEMA O., BEDDEKA S., DROUICHEA N., Recovery of silicon carbide and synthesis of silica materials from silicon ingot cutting fluid waste, Sep. Purif. Technol., 2021, 254, 117556, DOI: 10.1016/j.seppur.2020.117556.
  • [12] DROUICHE N., CUELLAR P., KERKAR F., MEDJAHED S., OUSLIMANE T., HAMOU M.O., Hidden values in kerf slurry waste recovery of high purity silicon, Renew. Sustain. Energy Rev., 2015, 52, 393–399, DOI: 10.1016/j.rser.2015.07.114.
  • [13] KAE-LONG L., KANG-WEI L., TA-WUI CH., WEI-TING L., YA-WEN L., Utilization of silicon carbide sludge as metakaolin-based geopolymer, Mater. Sust., 2020, 12, 7333, DOI: 10.3390/su12187333.
  • [14] KIM Y., MIN K., SHIM J., KIM D.J., Formation of porous SiC ceramics via recrystallization, J. Eur. Cer. Soc., 2012, 32, 3611–3615, DOI: 10.1016/j.jeurceramsoc.2012.04.044.
  • [15] BS ISO 9286:1997, Abrasive grains and crude. Chemical analysis of silicon carbide, BS ISO Standards Publication.
  • [16] ASTM C566-19, Standard test method for total evaporable moisture content of aggregate by drying, ASTM International Standards Publication, 2019.
  • [17] CHEN Y., CHEN X., AIOUARAB L., OPOZ T., XU X.P., YU G., Morphology analysis and characteristics evaluation of typical super abrasive grits in micron scale, J. Superhard Mater., 2019, 41, 189–200, DOI: 10.3103/S1063457619030079.
  • [18] FEPA 45-1:2011, Chemical analysis of silicon carbide, FEPA Standards Publication.
  • [19] FEPA Standard shapes and dimension for precision superabrasives, FEPA Standards Publication.
  • [20] FEPA 44-2:2006, Grains of fused aluminium oxide and silicon carbide and other abrasive materials. Part 2: Determination of bulk density – Microgrits F and P series, FEPA Standards Publication.
  • [21] ISO 9136-2:1999, Abrasive grains. Determination of bulk density. Part 2: Microgrits, ISO Standards Publication.
  • [22] FEPA 42-2:2006, Grains of fused aluminium oxide, silicon carbide and other abrasive materials for bonded abrasives and for general applications. Microgrits F 230 to F 2000, FEPA Standards Publication.
  • [23] FEPA 43-2:2017, Grains of fused aluminium oxide, silicon carbide and other abrasive materials for coated abrasives. Microgrits P 240 to P 5000, FEPA Standards Publication.
  • [24] ANSI B74.12, Specification for the size of abrasive grain – grinding wheels, polishing and general industrial uses, Published by Unified Abrasives Manufacturers Association.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80d9657c-35af-4f6a-bb0d-ad91ed6f49ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.