PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Approximation models for the evaluation of TCP/AQM networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article proposes a model in which Diffusion Approximation is used to analyse the TCP/AQM transmission mechanism in a multinode computer network. In order to prevent traffic congestion, routers implement AQM (Active Queue Management) algorithms. We investigate the influence of using RED-based AQM mechanisms and the fractional controller PIγ on the transport layer. Additionally, we examine the cases in which the TCP and the UDP flows occur and analyse their mutual influence. Both transport protocols used are independent and work simultaneously. We compare our solution with the Fluid Flow approximation, demonstrating the advantages of Diffusion Approximation.
Rocznik
Strony
art. no. e141986
Opis fizyczny
Bibliogr. 58 poz., rys.
Twórcy
  • Faculty of Automatic Control, Electronics and Computer Science, Department of Distributed Systems and Informatic Devices, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
  • Faculty of Automatic Control, Electronics and Computer Science, Department of Distributed Systems and Informatic Devices, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
  • Faculty of Automatic Control, Electronics and Computer Science, Department of Distributed Systems and Informatic Devices, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] J.M. Amigó, G. Duran, Á. Giménez, J. Valero, and O.M. Bonastre, “Modeling a new aqm model for internet chaotic behavior using petri nets,” Appl. Sci., vol. 11, no. 13, p. 5877, 2021.
  • [2] N. El Fezazi, Y. Elfakir, F.A. Bender, and S. Idrissi, “Aqm congestion controller for tcp/ip networks: Multiclass traffic,” J. Control Autom. Electr. Syst., vol. 31, no. 4, pp. 948–958, 2020.
  • [3] L. Tan, K. Huang, G. Peng, and G. Chen, “Stability of tcp/aqm networks under ddos attacks with design,” IEEE Trans. Network Sci. Eng., vol. 7, no. 4, pp. 3042–3056, 2020.
  • [4] Wu-chang Feng, K.G. Shin, D.D. Kandlur, and D. Saha, “The BLUE Active Queue Management algorithms,” IEEE/ACM Trans. Networking, vol. 10, no. 4, pp. 513–528, 2002.
  • [5] Liujia Hu and A.D. Kshemkalyani, “HRED: a simple and efficient Active Queue Management algorithm,” in Proceedings. 13th International Conference on Computer Communications and Networks, 2004, pp. 387–393.
  • [6] C. Long, B. Zhao, X. Guan, and J. Yang, “The Yellow Active Queue Management algorithm,” Computer Networks, vol. 47, no. 4, pp. 525–550, 2005.
  • [7] N. Khademi, D. Ros, and M. Welzl, “The new aqm kids on the block: An experimental evaluation of codel and pie,” in 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2014, pp. 85–90.
  • [8] A. Adamu, V. Shorgin, S. Melnikov, and Y. Gaidamaka, “Flexible random early detection algorithm for queue management in routers,” in International Conference on Distributed Computer and Communication Networks, 2020, pp. 196–208.
  • [9] S.K. Bisoy and P.K. Pattnaik, “A neuron-based active queue management scheme for internet congestion control,” Int. J. Reasoning-based Intell. Syst., vol. 12, no. 4, pp. 238–247, 2020.
  • [10] S. Floyd and V. Jacobson, “Random Early Detection gateways for congestion avoidance,” IEEE/ACM Trans. Networking, vol. 1, no. 4, pp. 397–413, 1993, doi: 10.1109/90.251892.
  • [11] J. Domańska, D. Augustyn, and A. Domański, “The choice of optimal 3-rd order polynomial packet dropping function for NLRED in the presence of self-similar traffic,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 4, pp. 779–786, 2012, doi: 10.2478/v10175-012-0090-x.
  • [12] K. Zhou, K. Yeung, and V. Li, “Nonlinear RED: A simple yet efficient Active Queue Management scheme,” Comput Networks, Int. J. Comput. Telecommun. Networking, vol. 50, no. 18, pp. 3784–3794, Dec. 2006, doi: 10.1016/j.comnet.2006.04.007.
  • [13] I. Podlubny, “Fractional order systems and PIl dm controllers,” IEEE Trans. Autom. Control, vol. 44, no. 1, pp. 208–214, 1999.
  • [14] M. Tarmizi, A. Albagul, O. Khalifa, and Wahyudi, “QoS Evaluation of Different TCPs Congestion Control Algorithm using NS2,” in 2nd International Conference on Information Communication Technologies, vol. 2, 2006, pp. 3222–3227.
  • [15] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to TCP’s Fast Recovery Algorithm,” RFC 3782, 2004.
  • [16] C.A. Grazia, N. Patriciello, M. Klapez, and M. Casoni, “A crosscomparison between TCP and AQM algorithms: Which is the best couple for congestion control?” 14th International Conference on Telecommunications (ConTEL), pp. 75–82, 2017.
  • [17] C.V. Hollot, V. Misra, and D. Towsley, “Analysis and design of controllers for AQM routers supporting TCP flows,” IEEE Transaction on Automatic Control., vol. 47, no. 6, 2002.
  • [18] P. Shah, S. Yasmin, S. Asghar, A. Qayyum, and H. Hasbullah, “A Fluid Flow Model for SCTP Traffic over the Internet,” in Proceedings of the International Conference on Emerging Technologies (ICET), 2012, pp. 1–6, doi: 10.1109/ICET.2012.6375481.
  • [19] J. Domańska, A. Domański, T. Czachórski, and J. Klamka, “Fluid flow approximation of time-limited TCP/UDP/XCP streams,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 2, pp. 217–225, 2014, doi: 10.2478/bpasts-2014-0021.
  • [20] M. Bonaventura and R. Castro, “Fluid-flow and packet-level models of data networks unified under a modular/hierarchical framework: speedups and simplicity, combined,” in 2018 Winter Simulation Conference (WSC), 2018, pp. 3825–3836.
  • [21] O.J. Kravets, I.V. Atlasov, I.A. Aksenov, A.S. Molchan, O.Y. Frantsisko, and P.A. Rahman, “Increasing efficiency of routing in transient modes of computer network operation,” Int. J. Intell. Technol. Secur., vol. 13, no. 2, pp. 3–14, 2021.
  • [22] A. Domański, J. Domańska, T. Czachórski, J. Klamka, J. Szyguła, and D. Marek, “Diffusion Approximation Model of TCP NewReno Congestion Control Mechanism,” SN Comput. Sci., vol. 1, p. 43, 2020, doi: 10.1007/s42979-019-0032-x.
  • [23] T. Czachórski, “A method to solve Diffusion Equation with Instantaneous return Processes Acting as Boundary Conditions,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 41, no. 4, pp. 417–451, 1993.
  • [24] E. Gelenbe and G.Pujolle, “The Behaviour of a Single-Queue in a General Queueing Network,” Acta Informatica., vol. 7, no. 2, pp. 123 – 136, 1976, doi: 10.1007/BF00265766.
  • [25] A. Duda, “Diffusion approximations for time-dependent queueing systems,” IEEE J. Sel. Areas Commun., vol. 4, pp. 905–918, 1986.
  • [26] H. Seferoglu and E. Modiano, “TCP-aware backpressure routing and scheduling.” in Information Theory and Applications Workshop (ITA), 2014, pp. 1–9.
  • [27] A. Bohloulzadeh and R. Mehri, “A Survey on Congestion Control Protocols in Wireless Sensor Networks.” Int. J. Wireless Inf. Networks, vol. 27, pp. 365–384, 2020.
  • [28] M.A. Jan, S. Jan, M. Alam, A. Akhunzada, and I. Rahman, “A Comprehensive Analysis of Congestion Control Protocols in Wireless Sensor Networks.” Mobile Networks Appl., vol. 23, pp. 456–468, 2018.
  • [29] V. Misra, W. Gong, and D. Towsley, “Fluid-based analysis of network of AQM routers supporting TCP flows with an application to RED,” Computer Communication Review., vol. 30, no. 4, pp. 151–160, 2000, doi: 10.1145/347059.347421.
  • [30] W. Li, L. Zeng-zhi, C. Yan-ping, and X. Ke, “Fluid-based stability analysis of mixed TCP and UDP traffic under RED,” in 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05), 2005, pp. 341–348.
  • [31] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-Based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED,” Assoc. Comput. Mach., vol. 30, no. 4, p. 151–160, 2000, doi: 10.1145/347057.347421.
  • [32] M. Nycz, T. Nycz, and T. Czachórski, “Modelling dynamics of TCP flows in very large network topologies,” in Information Sciences and Systems 2015, 2016, pp. 251–259, doi: 10.1007/978-3-319-22635-4_23.
  • [33] Y. Hong and O.W.W. Yang, “Adaptive AQM controllers for IP routers with a heuristic monitor on TCP flows,” Int. J. Commun. Syst., vol. 19, no. 1, pp. 17–38, 2006.
  • [34] Jinsheng Sun, K. Ko, Guanrong Chen, S. Chan, and M. Zukerman, “PD-RED: to improve the performance of RED,” IEEE Commun. Lett., vol. 7, no. 8, pp. 406–408, 2003.
  • [35] F. Yanfie, R. Fengyuan, and L. Chuang, “Design a PID controller for Active Queue Management,” in Proc. of the Eighth IEEE Symposium on Computers and Communications. ISCC 2003, vol. 2, 2003, pp. 985–990.
  • [36] H. Unal, D. Melchor-Aguilar, D. Ustebay, S.-I. Niculescu, and H. Ozbay, “Comparison of PI controllers designed for the delay model of TCP/AQM,” Comput. Commun., vol. 36, no. 10, pp. 1225–1234, 2013.
  • [37] G. Kahe and A.H. Jahangir, “A self-tuning controller for queuing delay regulation in TCP/AQM networks,” Telecommunication Systems, vol. 71, pp. 215–229, 2019.
  • [38] Y. Chen, I. Petras, and D. Xue, “Fractional order control – A tutorial,” in American Control Coference, 2009, pp. 1397–1411.
  • [39] W. Krajewski and U. Viaro, “On robust fractional order PI controller for TCP packet flow,” in BOS Coference: Systems and Operational Research., Warsaw, Poland, Sep. 2014.
  • [40] J. Domańska, A. Domański, T. Czachórski, and J. Klamka, “The use of a non-integer order PI controller with an Active Queue Management Mechanism,” Int. J. Appl. Math. Comput. Sci., vol. 26, pp. 777–789, 2016, doi: 10.1515/amcs-2016-0055.
  • [41] J. Domańska, A. Domański, T. Czachórski, J. Klamka, and J. Szyguła, “The AQM Dropping Packet Probability Function Based on Non-integer Order PIaDb Controller,” in Lecture Notes in Electrical Engineering. Non-Integer Order Calculus and its Applications, vol. 496, 2019, pp. 36–48, doi: 10.1007/978-3-319-78458-8_4.
  • [42] T. Czachórski and F. Pekergin, “Diffusion Approximation as a Modelling Tool,” Network Performance Engineering. A Handbook on Convergent Multi-Service Networks and Next Generation Internet. LNCS, vol. 5233, pp. 447–476, 2011, doi: 10.1007/978-3-642-02742-0_20.
  • [43] T. Czachórski, K. Grochla, T. Nycz, and F. Pekergin, “A diffusion approximation model for wireless networks based on IEEE 802.11 standard,” Comput. Commun., vol. 33, pp. 86–92, 2010.
  • [44] T. Nycz, M. Nycz, and T. Czachórski, “A Numerical Comparison of Diffusion and Fluid-Flow Approximations Used in Modelling Transient States of TCP/IP Networks,” Commun. Comput. Inf. Sci., vol. 431, pp. 213–222, 2014.
  • [45] D. Marek, A. Domański, J. Domańska, T. Czachórski, J. Klamka, and J. Szyguła, “Combined diffusion approximation – simulation model of AQM’s transient behavior,” Comput. Commun., vol. 166, pp. 40–48, 2020, doi: 10.1016/j.comcom.2020.11.014.
  • [46] D. Marek, A. Domański, J. Domańska, J. Szyguła, T. Czachórski, and J. Klamka, “Diffusion Model of a Non-Integer Order PIg Controller with TCP/UDP Streams,” Entropy, vol. 23, no. 5, 2021, doi: 10.3390/e23050619.
  • [47] J. Domańska, A. Domański, T. Czachórski, and J. Klamka, “Self-similarity Traffic and AQM Mechanism Based on Noninteger Order PIaDb Controller,” in Computer Networks: Communications in Computer and Information Science, vol. 718, 2017, pp. 336–350, doi: 10.1007/978-3-319-59767-6_27.
  • [48] A. Domański, J. Domańska, T. Czachórski, J. Klamka, D. Marek, and J. Szyguła, “GPU Accelerated Non-integer Order PIaDb Controller Used as AQM Mechanism.” in Computer Networks: Communications in Computer and Information Science, vol. 860, 2018, pp. 286–299, doi: 10.1007/978-3-319-92459-5_23.
  • [49] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, USA, 1999, vol. 198.
  • [50] M. Ciesielski and J. Leszczynski, “A Numerical Method for Solution of Ordinary Differential Equations of Fractional Order,” in Parallel Processing and Applied Mathematics, vol. 2328, 2002, pp. 695–702, doi: 10.1007/3-540-48086-2_77.
  • [51] C. Hollot, V. Misra, and D. Towsley, “A control theoretic analysis of RED,” in Proc. IEEE INFOCOM 2001, 2001, pp. 1510–1519.
  • [52] D. Towsley, W. Gong, K. Hollot, Y. Liu, and V. Misra, “Fluid Methods for Modeling Large, Heterogeneous Networks,” NTIS, 2005.
  • [53] G.F. Newell, “Queues with time-dependent arrival rates. I – The transition through saturation,” J. Appl. Probab., vol. 2, no. 2, pp. 436–451, 1968, doi: 10.2307/3212264.
  • [54] E. Gelenbe, “On Approximate Computer Systems Models,” J. ACM, vol. 22, no. 2, pp. 261–269, 1975, doi: 10.1145/321879.321888.
  • [55] E. Gelenbe, “A Diffusion Model for Packet Travel Time in a Random Multi-hop Medium,” ACM Trans. Sens. Netw., vol. 3, no. 2, p. 10, 2007, doi: 10.1145/1240226.1240230.
  • [56] T. Bonald, M. May, and J. Bolot, “Analytic evaluation of RED performance,” in Proc. of INFOCOM, 2000.
  • [57] B. Zheng and M. Atiquzzaman, “A Framework to Determine the Optimal Weight Parameter of RED in Next-Generation Internet Routers,” Int. J. Commun. Syst., vol. 21, no. 9, p. 987–1008, 2008, doi: 10.5555/1405579.1405584.
  • [58] “Simpy documentation,” [Accessed: 2022-05-27]. [Online]. Available: https://simpy.readthedocs.io/en/latest/
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80d3e890-d63e-4128-88a4-10ad3087801e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.