PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some notes on graded weakly 1-absorbing primary ideals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A proper graded ideal P of a commutative graded ring R is called graded weakly 1-absorbing primary if whenever x, y, z are nonunit homogeneous elements of R with 0≠xyz ∈ P , then either xy ∈ P or z is in the graded radical of P. In this article, we explore more results on graded weakly 1-absorbing primary ideals.
Wydawca
Rocznik
Strony
art. no. 20230111
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
  • Department of Mathematics, Yarmouk University, Irbid 21163, Jordan
  • Department of Mathematics, Yarmouk University, Irbid 21163, Jordan
Bibliografia
  • [1] C. Nastasescu and F. Oystaeyen, Methods of Graded Rings, 1836, Springer-Verlag, Berlin, 2004.
  • [2] M. Refai, M. Hailat, and S. Obiedat, Graded radicals and graded prime spectra, Far East J. Math. Sci. (2000), 59–73.
  • [3] M. Refai and K. Al-Zoubi, On graded primary ideals, Turkish J. Math. 28 (2004), no. 3, 217–229.
  • [4] S. E. Atani, On graded weakly prime ideals, Turkish J. Math. 30 (2006), 351–358.
  • [5] S. E. Atani, On graded weakly primary ideals, Quasigroups Related Syst. 13 (2005), 185–191.
  • [6] R. Abu-Dawwas and M. Bataineh, On graded 1-absorbing primary ideals, Turkish J. Math-Studies Scientific Developments in Geometry, Algebra, and Applied Mathematics, Turkish Journal of Mathematics, Turkey, February 1–3, 2022.
  • [7] M. Bataineh and R. Abu-Dawwas, Graded weakly 1-absorbing primary ideals, Demonstr. Math. 56 (2023), 20220214.
  • [8] F. Soheilnia and A. Y. Darani, On graded 2-absorbing and graded weakly 2-absorbing primary ideals, Kyungpook Math. J. 57 (2017), no. 4, 559–580.
  • [9] R. Abu-Dawwas, E. Yıldız, Ü. Tekir, and S. Koç, On graded 1-absorbing prime ideals, Sao Paulo J. Math. Sci. 15 (2021), 450–462.
  • [10] F. A. A. Almahdi, M. Tamekkante, and A. N. A. Koam, Note on weakly 1-absorbing primary ideals, Filomat 36 (2022), no. 1, 165–173.
  • [11] A. Badawi and E. Y. Celikel, On 1-absorbing primary ideals of commutative rings, J. Algebra Appl. 19 (2020), no. 6, 2050111.
  • [12] A. Badawi and E. Yetkin, On weakly 1-absorbing primary ideals of commutative rings, Algebra Colloquium 29 (2022), no. 2, 189–202.
  • [13] M. Refai, Various types of strongly graded rings, Abhath Al-Yarmouk J. (Pure Sciences and Engineering Series) 4 (1995), no. 2, 9–19.
  • [14] R. Abu-Dawwas, On graded strongly 1-absorbing primary ideals, Khayyam J. Math. 8 (2022), no. 1, 42–52.
  • [15] G. Calugareanu, UN-rings, J. Algebra Appl. 15 (2016), 165–182.
  • [16] Ü Tekir, S. Koç, and K. H. Oral, n-Ideals of commutative rings, Filomat 31 (2017), 2933–2941.
  • [17] K. Al-Zoubi, F. Turman and E. Y. Çelikel, Gr-n-ideals in graded commutative rings, Acta Universitatis Sapientiae: Mathematica 11 (2019), no. 1, 18–28.
  • [18] M. Bataineh and R. Abu-Dawwas, On graded 2-prime ideals, Mathematics 9 (2021), no. 5, 493, doi: https://doi.org/10.3390/math9050493.
  • [19] A. Melhem, M. Bataineh, and R. Abu-Dawwas, Characterizations of graded rings over which every graded semi-primary ideal is graded 1-absorbing primary, Wseas Trans. Math. 20 (2021), 547–553.
  • [20] R. Abu-Dawwas, H. Saber, T. Alraqad, and R. Jaradat, On generalizations of graded multiplication modules, Boletim da Sociedade Paranaense de Matematica 40 (2022), 1–10.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80d1d7d0-7cf4-420c-97fa-6ae69e1216de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.