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Abstract

This work describes the development of a program based on the Finite Element Method for
the calculation of a temperature field in orthotropic sample with use of the Neumann's
Boundary Condition. Such a program has been created for the purposes of the project carrying
out in the Intitute of Thermal Technology in Gliwice, Poland. It is an important part of the
fully — automated algorithm for determining the sample's thermal conductivity by fitting
numerically obtained temperature field with its counterpart provided by the measurements.
Because of the specific nature of the measurement process as well as the main algorithm
itself, the developed program is characterized by high efficiency (comparable to Ansys),
sufficient accuracy and preparation for cooperation with the mentioned before fully —
automated algorithm. Most important features of the program are: module for geometry data
import (data is provided by the Ansys), module for the results export, the two control text files
for easy management by external procedures, logging and error reporting module.
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Nomenclature

Greek symbols

&EM U - natural coordinates

P - density, kg/m®

A - increase

d - derivative

A - thermal diffusivity, m*/s

Latinsymbols

N - shape function

C - specific heat, J/kg K

k - thermal conductivity, W/(m °C)
q - heat flux, W/m?

Superscripts

E - element number

N - Gaussian Point number
T - transposition

1D, 2D, 3D -1, 2 ,3 dimensions

S - step number
Subscripts

I ] - nodal number

Abbreviations

BC(s) - Boundary Condition(s)

BDM - Backward Difference Method
CDM - Central Difference Method
CMM - Consistent Mass Matrix

DBC - Dirichlet's Boundary Condition
DLMM - Diagonally Lumped Mass Matrix
FDM - Forward Difference Method
FEM - Finite Element Method

GP(s) - Gaussian Point(s)

NBC - Neumann's Boundary Condition
PCG - Preconditioned Conjugate Gradient
TC - Thermal Conductivity

Notation

vectors and matrices are set in boldface
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1 Introduction.

1.1 Background and motivation.

Most of widely known and used contemporary methods of determination of thermal
conductivities (TC) are, in most cases, very inaccurate, time — consuming, complicated or
have destructive character. A precisely determined TC is crucial in many engineering issues,
for instance: assessment of heat losses and gains, definition of allowable thermal working
conditions of a component or the entire machine and evaluation of thermal strains and
stresses. In the case of insulating materials, the TC has decisive impact on the material's
quality. In general, in the literature are described many TC measuring methods with their
numerous variants, but certainly one can distinguish several major ones:

e Guarded hot plate — a solid sample is placed between two plates of which one is heated
while the other is cooled (or heated in lesser extent). After reaching steady — state,
necessary measurements and calculations are performed [1].

e Hot wire — a heated wire is inserted into the sample and then temperature change is
recorded. Density and heat capacity have to be known. At the end, plot of the wire's
temperature change versus logarithm of the time is used to calculate the TC [1].

¢ Modified hot wire — the wire is supported on backing so it does not require sample's
penetration [1].

e Laser flash diffusivity — sample's surface is heated with laser's pulse and infrared
camera records the temperature field [1].

e Magnetic resonance imaging techniques — relation between temperature and magnetic
field has been used in order to determine the thermal diffusivity [2].

Guarded hot plate method requires a lot of time until steady — state is reached. Hot wire
method, in turn, because of sample's penetration, can be applied to fluids, foams and melted
plastics [1] but not for solids. While the Laser flash method (see also Parker flash method [3])
is fast, reliable but requires preparation of the samples that are damaged during the
measurements due to high temperature. It is important to notice that most of them allow for
determining TC in isotropic materials only. Hence, need of developing more reliable as well
as more accurate methods arises, particularly in orthotropic or anisotropic materials case. An
example of one of the promising and innovative methods is described in [2]. In brief, it
constitutes a development of the Parker flash method [3] and also consists of heating a sample
with use of a laser flash (Figure 2) and recording (with Infrared Camera) the temperature
distribution on a heated surface. In the next stage numerical analysis is applied comprising
modeling this phenomena with use of dedicated algorithm and comparing temperature fields
(obtained both by experiment and by computations). Figure 1 shows schematic block diagram
of the described procedure. It should be stressed that, in order to properly fit experimental
temperature field with its numerically obtained counterpart, TC must be controlled during the
analysis. Briefly, TC has to be guessed and experimental results are used as a benchmark.
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Figure 1: Schematic block diagram of the algorithm for determining the thermal conductivity
in orthotropic material. The program's place in the procedure is marked with ellipse. The
image has been taken from [2].

Usage of a commercial software like Ansys Mechanical, Ansys Fluent or MSC.Patran is, at
least, troublesome. Mainly due to the specific requirements provided by the nature of the
analysis. For instance, some difficulties occurred during modeling of heat transfer based on
the Neumann's Boundary Condition (NBC) in Fluent. Most probably the Finite VVolume
Method (FVM) Fluent is using, is unsuitable for such phenomenon or there is a necessity for
some specific settings of the analysis. For now, Fluent provides far higher temperatures than
Ansys Transient Thermal (using Finite Element Method FEM). Such a situation confirms the
fact that using the commercial software can be problematic due to its own specific features
and requirements regarding the, for example, mesh or analysis setup. Furthermore,
cooperation of this software with external procedures can provide a lot of trouble as well. It
should be stressed that, for the purposes of the project it is necessary to allow for efficient
cooperation between different programs belonging to the procedure described in the next
paragraph. In this regard, developing of a self — made FEM code may be much better solution
than use of the complicated commercial software. Besides that, the licenses of such software
are expensive so in a situation when one has choose between commercial and free program
with comparable performance and accuracy, the latter is better choice.

First of all, whole numerical procedure has to be fully automated. Experimental results are
loaded into analysis setup file, then main program calls for a subprogram responsible for the
computations which are carried out in order to get numerical temperature field. This
subprogram prepares specific output files formatted in a desired way that next subprogram
can compare specified temperatures and, if it is necessary, change the TCs and repeat whole
procedure until convergence is reached.
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Figure 2: A sample holder and dot of the laser beam.

The subject of this work is to create a fully automated program using the Finite Element
Method to solving heat transfer problems with use of the NBC. Such program will be used in
a procedure of determination of the TCs within the project described in [2]. Besides that, it
will have several important advantages over the Ansys. At first, in contrast to the complex
Ansys and its highly developed interface, managing this program will be much simpler due to
ordinary text files which are easy to create and edit with use of user defined procedures
written, for instance, in MATLAB or in FORTRAN. Secondly, results provided by the
program can be easily formatted in a required manner so their further processing will not
cause any additional problems — it is easy to achieve with use of user defined procedures
designed directly for this task and for this particular kind of the program. Additionally it is
always better when there is possibility of customization both of cooperating programs than
only one of them like it would have been if the Ansys was used instead of program developed
as the subject of this work.

First task that had to be done, was to choose the programming environment which would
allow relatively quick, easy and efficient developing of desired program. The choice fell on
the MATLAB [4] because of several important factors:

e awide range of efficient and already implemented functions for managing data,
easy developing own procedures on the basis of the MATLAB's functions,
efficient computing of large matrices,

easy and user — friendly debugging module,

'Profiler' — tool facilitating the optimization of the code,

File Exchange — free service for sharing files between MATLAB's users [5].
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The next stage was proper application of the Finite Element Method (briefly described in
Chapter 2.1). To be sure, the FEM written in MATLAB works properly, several test cases
have been solved. Each of them had its own contribution into final result being finished
program for the purposes of the project. It was a long journey through MATLAB
programming environment, FEM's features and linear algebra needed to find a way of
efficient and accurate solving systems of thousands equations.

As it was mentioned before, the program is for the purposes of the project realized at the
Institute of Thermal Technology in Gliwice, Poland. A core problem is not a development of
such program, but achievement of desired accuracy and efficiency. It is problematic due to the
number of phenomena accompanying the process of laser's radiation. These phenomena are:

¢ radiation of the warmed sample' surface due to the laser beam,
e conduction inside the sample's material (TC is unknown),
e carbonization of the sample due to high temperatures.

Convection's impact is negligible. Radiation heat flow depends on a temperature to the fourth
power. That temperature rises to about several hundred Celsius degrees in less than 0.2 s.
Thermal conductivities are unknowns whereby they are additional complicating factor.
Moreover, due to high temperatures local carbonization of the sample occurs thus chemical
composition changes so material properties do as well. Besides that, sample's density, TC and
specific heat, all depend on the temperature in real case.

Another factor complicating the task is short time interval. Mentioned above phenomena are
very dynamic. Whole measurement process consists of three main stages:

e heating with use of the laser flash — lasts for about 0.2 second,

e removing the laser and replacing it with the Infrared (IR) camera in order to keep
precisely the same angle as during previous stage — lasts for about 0.3 s,

e temperature field recording — lasts for about two second, time steps depend on
recording times of IR camera (frames per second to be exact) and on the speed of
saving those temperature fields on a hard drive.

At this stage, the program for numerical modeling of the temperature field is under the
validation. In addition to that, importing required data, file for managing whole program,
monitoring of the executed procedures (logs) as well as extracting results in desired form are
already implemented. However, loss of the heat due to radiation and temperature — dependent
material properties still require further investigation on their impact on the solution.

2 Governing equations.

In the FEM transient heat transfer equation [6] is solved numerically. For orthotropic bodies
and constant TC, specific heat and density such equation takes the form

VKVT + 4, = po
4v = Pt 1)
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T is the temperature, k is thermal conductivity represented by the following vector

k=[ke ky ki (2)

gy is internal heat source (in this work q, = 0), p and cstand for the specific heat and density
respectively.

2.1 The Finite Element Method.

Today solving complex mathematical problems of physics and engineering is possible using
numerical methods only. Amongst these methods certainly worthy of distinction is the Finite
Element Method — a powerful and widely used tool in the field of mechanics and heat
transfer. To get more information about FEM, please refer to [7], [8], [9] and[11]. Figure 3
presents main idea of the FEM used in this work. First, main domain — a cylinder as an
example of a solid that can be easily presented and simultaneously has irregular shape — is
divided into sub domains (finite elements — that is the first approximation of the domain).
Then it is assumed that all finite elements are hexahedrons (parent elements — this is second
approximation of the domain). For each parent element Jacobian together with its
determinants is computed as well as stiffness matrix of the element K. Simultaneously mass
matrix of the element M is determined. Next, these matrices are assembled into global K and
M respectively. Right Hand Side (RHS) vector F stores coefficients of the NBC determined
with GPs, nodal coordinates, shape functions for a 2D case and the same mesh. In the next
stage, time step and initial temperature are applied and equation BDM [(Backward Difference
Method) (16)] is solved. Each subsequent iteration has its own initial temperature from the
previous time step.
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Figure 3: Schematic block diagram showing main idea of the FEM used in this work.
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2.2 Shape functions.

Shape functions (SF) are polynomials and are used for interpolating continuous filed quantity
as well as to define shape of the parent element. In this work hexahedral 20-node elements
have been used, hence it follows the order of such functions together with their form. Such
functions belong to, so called, serendipity shape functions family [9]. Shape functions are
more precisely described in [7,9,10]. Figure 4 shows adopted manner of numbering of the
parent element's nodes.

3
5 16 15

10

2

Figure 4: Hexahedral element in global coordinate system with its node numbering manner.

Nodal numbers correspond to the proper shape functions. The choice of 20 — node element
(and those functions) is not accidental because of two important factors. Namely, shape
functions of the second order are sufficient enough to model temperature distribution
precisely, moreover use of serendipity elements allows to remove interior nodes of all
hexahedron's walls as well as one right in the middle. As a result significant reduction of
degrees of freedom occurs what leads to smaller computational effort — instead of 27 nodes
there are only 20 in a single element. In addition to that, such reduction has no serious impact
on accuracy [12].

2.3 Gaussian quadrature — integral approximation.

In numerical methods integrals are approximated instead of directly solved. There are many
methods to do such approximation, some of them are more efficient than others, for instance,
Gaussian quadrature. The idea is to pick such set of points (let say Gaussian Points - GP) that
after the insertion of them into approximating integral, an accurate solution is obtained.

Each GP has its own wage. The wages define shares of approximated domain. In 3
dimensions (3D) it is a volume, in 2 dimensions (2D) it is a share of surface whereas in 1D
case it is a section. In 3D case GP's coordinates has three components (X, y, z or &, 1, W),
hence volume around the GP consists of a combination of three wages vy, Yy, Yz

Figure 5 shows 1D example of the Gaussian quadratures. Despite the fact that this work
concerns 3D domain, one dimensional case is far more readable. Each GP (dots) approximates
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one piece of the bar. Each corresponding wage describes length of a section that
approximated by a given GP.

n=3
0,55555 0.8889 0,55555
— I i I &

g -1-0.77459 0 0.77459 1

Figure 5: Gaussian quadrature of the third order in 1D case.
For more specific information about Gaussian quadrature, please, refer to [8,9,13].

2.4 The Jacobian — a link between global and natural coordinate systems.

The Jacobian [J] is a measure of the distortion of the given parent element defined in local
coordinates in comparison to its counterpart in global coordinates [14]. Whereas determinant
of the Jacobian, det[J], is numerically equal to the length of a section of its counterpart in 1D,

surface in 2D case and equal to its volume in 3D case. The Jacobian is necessary to keep
link between sub - domains and their global counterparts.

a

Figure 6 shows simple 2D case while the exemplary element (gray) is transformed into
quadrilateral parent element. Using the Jacobian allows to determine surface A of the given

element

A(x,y) = det[J] 0&9n (3)
Y &
dx
N . o 9
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d
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Figure 6: Finite element (gray) in global coordinate system and its counterpart in local.

If the element had been, for example, rectangle with the same length in x direction as its

ax 0
X 2\would be non — zeros.

parent element, the two main (diagonal) Jacobian coefficients 3%
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whereZ- is an e — th element's shape function's derivative, x;,y;, z; are proper components

9
of global coordinate of i — th nodal point.

In the method adopted in this project Gaussian integration was used to estimate triple integral
limiting parent element's domain. Determination of such matrix is quite simple and proceeds
as follows

dx dx ox7°¢

n n nal ox ox ox
[6N1 ON{ JdN/{ ] , . ) 32 71 o
Eo r} o ‘ _ | % 0y (6)
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where first matrix contains set of all nodes' derivatives calculated with n — th Gaussian point,
middle one contains global coordinates of e — th element and last one is the component
Jacobian matrix. In order to determine [J]¢ a simple summation of all components[J]™¢must
be carried out hence

rdx  Ox ox7“¢
NoGP NoGP 65 677 a’u
pr= Y=y | 22 )
¢ dn Odu
n=1 n=1
0z 0z 0z
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where NoGP is number of the Gaussian points (in this work NoGP = 27).

Determinant of the Jacobian matrix of the element e and n — th GP is calculated as follows

NoGP

det[J]¢ = z detij]™e ®)
n=1

where detifJ]™¢ is computed with use of the Sarrus' rule [15].

2.5 Element's Stiffness Matrix [K]°.

Element's Stiffness Matrix [K]® (or conductance matrix) contains a set of coefficients
indicating mutual relationship between all nodes in the considering sub-domain. Such a
matrix is diagonal having a size of Number of the Element's Nodes x Number of the Element's
Nodes (NOEN x NOEN). In case of 20 — node hexahedron such a matrix is 20 x 20.
Determination of the matrix [K]® is as follows

NoGP

Zdetv“««[ oy
e 2

(9)

and
[ON]*] |[0N1"e]| [ON] en
aNT™* | 0x aN”e _| a_y | [aN"e | 0z }
’ n,e n,e 10
ox [ J N laN20 J| (10)
ox dy oz |

where[g—I:],[g—I;’], [2—1:] are arrays of derivatives transformed to global coordinate system. In

order to gather more specific information about such transformation, please refer to chapter 4
p. 154-157 of [8], chapter 2 p. 42-44 of [7] and chapter 2 p. 58-61 of [11]. Moreover, [K]® is
full.

2.6 Element's Mass Matrix [M]°.

Element's Mass Matrix [M]° (or capacitance matrix) contains approximated masses in nearest
surroundings of all nodes of the element after multiplication by density. Otherwise sum of all
values is equal to det[J]. In other words, each node is approximation of a part of the parent
element it belongs to. In 3D case, such node represents some volume of a solid which has
some density (mass) and specific heat. Such a matrix has the same dimensions as [K]°® and its
computation is as follows [11]
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NoGP

[M]° = > det]"< [NT" [N (1)
n=1
where
NET"
N]e = | (12)
N3o

It should be stressed that multiplication by density and specific heat occurs after global mass
matrix assemblage. Moreover, similarly to [K]%, [M]%is full.

2.7 Assembly of a global stiffness [K] and mass [M] matrices.

Assemblage of such matrices consists of a rewriting of all local[K]® and [M]° into one global
matrix [K]® and [M]° respectively. Size of the [K] and [M] depends on a total number of
nodes and is equal to TNoN X TNoN. It would be convenient to discuss assemblage on the
example. Element's stiffness matrix

K11 K1 noEN
ke=| : K : (13)
Knoeng  * KnoEN NoEN

Provides us with pattern of local nodal indexing, hence

ii = [(1:1: NoEN)(1: 1: NoEN) --- (1:1: NoEN)] } (14)
jj =[(1,1,...,NoEN)(2,2,..., NOEN) --- (NoEN,NoEN, ...NoEN)]
whereii and jj are local i — indices and j- indices respectively. For the first element (e = 1)

global indices equals local ones, but for any other element do not. Because of matrix
dimensions 20x20, global indices increase by 400 for each subsequent element.

At this point it suffices to state that, method adopted in this work is fast and effective. It
should be noted that [K] and [M] are sparse, which means a lot of their elements are equal to
zero. MATLAB's function sparse() allows to store only non — zero elements in the matrix.
Such solution saves a lot of memory. Example of stiffness and mass matrices are shown in
Figure 7. To get more specific information about stiffness and mass matrices assembly, please
refer to [7] or [11].
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Figure 7: Stiffness matrix [K] and Consistent Mass Matrix [M] (left hand side) and
Diagonally Lumped Mass Matrix (right hand side). Black dots denote non — zero values.
Generated with MATLAB's spy() function.

It is important to state that, those matrices (left hand side of the Figure 7) are highly
decomposed. In order to save computational effort one should strive for narrowing all off —
diagonal elements and concentrate them along main diagonal by optimization of nodal
numbering. Mass matrix with identical non — zero elements' distribution as well as the same
dimensions as [K] is known in the literature as Consistent Mass Matrix (CMM). Besides
CMM, in the literature known is also Diagonally Lumped Mass Matrix (DLMM) being
approximated version of CMM. Such a matrix has significantly reduced number of elements
what leads to faster computations but, due to additional approximation, lowers the accuracy.
Generally DLMMs are used in cases of very large geometries with millions of nodes when
computation time is more important than the accuracy [16].

Such approximation consists of a reduction of all off — diagonal elements to one lying in the
main diagonal, row — wisely. However, there are some requirements that have to be met. For
instance, in case of serendipity element, rows corresponding to their corner nodes result in
negative masses after summation of all elements which belong to them. In such a case,
conservation condition is not satisfied so use of different method of lumping may be
necessary. In the literature one can distinguish three main ways of mass matrix lumping:

e summation of all off — diagonal elements into one lying on the main diagonal,

e scaling diagonal elements by proper factor — in this method det[J] is divided by sum of
all diagonal elements and next is multiplied by each of them separately,

e Lobatto's method — is very similar to Gaussian quadrature.

Each of mentioned above methods, has its own pros and cons. In all of them lumping is
applied to local (element's) mass matrices which are assembled later. In order to get more
details, please refer to [16].
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2.8 Neumann's Boundary Condition.

In the work at hand boundary condition of the second kind is used to model the laser flash. In
case of a 3D geometry, laser flash (Heat Flux) can be prescribed to the surface only (see
Figure 8).

Figure 8: Example of applying HF and new 2D nodal numbering (grey).

As a result appears a necessity of determination of the Jacobian 2D as well as use of proper
shape functions together with Gaussian Points. Determination of the [J]?? carries out in the
same way as the [J] for 3D case. More information about 2D case can be found in [7], [8], [9]
and [11].

Such surface has 8 nodes and, in case of 3" order quadrature, 9 GPs. Heat flux coefficients
stored in RHS vector F are determined as follows

9
F?? = % Ni?P(n) det|J|?P (n) (15)

wherei = 1: 8 is nodal number, n = 1:9 is GP number and F2P denotes temporary array with
the BC coefficients. Next, all of these coefficients are multiplied by desired heat flux.For
single element, there is 8 coefficients determined in this way that are (with use of the
connectivity matrix) inserted into proper rows of the RHS array F (according to their global
order).

2.9 Backward Difference Method.

BDM assumes that, nodal temperature in step s+1 depends on all other nodal temperatures
from step s. In this work BDM has been chosen because of three main reasons:

e as an implicit scheme, is always convergent,
e there is no 'inversion' of [M] ([6], [11]),
e iswidely used by commercial software.
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First point refers to the time step At which has no impact on convergence of the solution [11].
The second one means that, in case of dense mesh, lumping of CMM will not be necessary to
keep reasonable calculation time because there is no mass matrix ‘inversion' in Eq.(16).
Another advantage of this method is simplicity, because implementation of the BDM does not
require much effort in comparison to Central Difference Method (CDM) or to Forward
Difference Method (FDM) [11]. System of equations can be written as

(MT* + AtF)

Ts+1 —
(M + AtK)

(16)

where T5*1 is vector of nodal temperatures in step s+1, T* is vector of nodal temperatures in
previous step s.

It is important to notice that in the denominator of Eq.(16) is [M] together with [K] which has
to be 'inversed' with no exception. [M] in the nominator, in this particular scheme, does not
have to be inversed. Eq.(16) is recomputed each time when time step At changes and can be
rewritten

TSt = (M + AtK)\(MTS + AtF) (17)

where \ is MATLAB's left division. Behind \ is hidden advanced equation solver using a wide
range of numerical methods [17], but has one essential drawback. Namely, solving many
systems of equations like Ax = b and Ay = c requires factorization each time, when \
command is executed. There is no possibility of storing factorized matrix in order to reuse it
in another system of equations. Matrix A inversion could be carried out once and then reused
but such solution should be excluded at the very beginning because of three main reasons:

e inversion process is highly inaccurate — a lot of elementary operations are burdened
with numerical errors,

e such process requires a lot of time,

e in case of sparse matrices (huge systems of equations), so called, fill —in phenomenon
occurs, what leads directly to full matrix instead of sparse and to a lot of memory
requested in order to store such matrix.

There are two ways of solving huge systems of equations of type Ax = b and Ay = c:

e direct methods - fast and accurate but requiring a lot of memory,
o factorization (Cholesky, LU, LDL', QR [20], Gaussian Elimination),
e iterative methods - not so fast and not so accurate but saving a lot of memory.
o Preconditioned Conjugate Gradient (PCG),
o Jacobi Conjugate Gradient (JCG),
o Cholesky Conjugate Gradient (CCG) [18].

Geometry and mesh, in this work and in the project [2] as well, are rather small and simple so
use of factorization is possible. Because of the decomposition of matrices [K] and [M]
Gaussian Elimination is inefficient, but works goods for diagonal matrices with narrowly
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distributed off — diagonal entries. Besides that, PCG has been tested also (because of the best
performance described in [18]) and it turned out it is comparable to factorization in MATLAB
2011a in contrast to 2009b.

Through Mathworks' File Exchange [5], Timothy A. Davis of the University of Florida has
released his own factorization algorithm [19] in 2009 that has been permanently implemented
to MATLAB 2014b as toolbox. This algorithm has been used, in this work, to solve Eq.(17).

2.10 Errors.
All errors presented in this work are calculated as follows

\/Ti,ZDLMM - \/Ti?CMM
-100% (18)

’ 2
Ti,CMM

where T is nodal temperature, i denotes node number, DLMM and CMM are Diagonally
Lumped Mass Matrix and Consistent Mass Matrix respectively.

Err; =

In the case of mixed BC described in Chapter 3.1.2 (steady — state), nodal temperatures
denoted with use of DLMM and CMM subscripts in the Eq.(18) are replaced by nodal
temperatures obtained with 2" and 3" order quadratures respectively using Eq.(19).

3 Numerical study — benchmark.

Before the program has been written, two benchmarks had been solved. First one in 2D,
second one in 3D to make sure the FEM works properly. It was very important to implement
new features step by step because of the complexity of the Finite Element Method so finding
potential mistake could be extremely difficult. At first, learn about integration between local
and global systems of coordinates was necessary (Gaussian quadrature, Jacobian). After that
proper assemblage of global stiffness matrix had to be done.

3.1 2D benchmark.

Pattern example has been generated with PATRAN and consisted of two cases of steady —
state heat transfer:

e pure Dirichlet's Boundary Condition (DBC),
e mix of Dirichlet's and Neumann's BCs.

This benchmark was carried out in order to learn how to apply BCs properly. Applying of
these BCs is discussed in chapters 3.1.1 and 3.1.2 using the specific examples for the
educational purposes. Also implementation of the BCs is described more specifically when
discussing the two following examples, mainly due to greater readability.

The geometry from PATRAN (Figure 9) was a simple plate composed of 27 elements and 106
nodes of length 0.5 m and width 0.2 m. All elements were 8 — nodal hexahedrons and were
equal to each other. Nodal coordinates as well as connectivity matrix were exported from
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PATRAN to a text file. It was, and it meant to be, a simple test and its purpose was to validate
the developed program.

Figure 9: The geometry generated with PATRAN.

PATRAN's nodal numbering were adopted so all nodes correspond to each other. Another
thing worth of mention is that, to approximate double integral Gaussian quadrature of the
second order was used. As shown later research, third order quadrature met the requirements
concerning the accuracy. To solve steady — state problem, the following equation is used

T = K\F (19)
Results in the following subsections have been obtained for thermal conductivity k = 25 v

m°C’

3.1.1 Dirichet's Boundary Condition.

Boundary condition of the first kind, also known as Dirichlet's BC, has been applied in the
way described in [8] on pages 103 — 104 with use of, so called, penalty method.

To the left hand side of the elements 1, 10 and 19 (see Figure 9) 50°C has been prescribed, to
the right hand side of the elements 9, 18 and 27, 150°C. Figure 10 proves temperature
distribution in both cases is the same and isotherms are arranged into symmetrical, vertical
strips of equal width. Gaussian order of the second order was used.

Temperature, C Temperature, C

02 = 150

0.15
100

01

0.05

0

L 1 L
0 005 01 015 02 025 03 035 04 04 05

Figure 10: Temperature distribution from:
MATLAB (left hand side), PATRAN (right hand side).
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It should be stressed, that presenting the results provided by different programs, in a similar
manner, is problematic. For instance, in MATLAB it is easy to generate such figure (Figure
10) in grayscale in contrast to PATRAN, where it is much more complicated. During the
analysis has been discovered that, in this particular case of pure DBC, results do not depend
on values of coefficients in a stiffness matrix as well as on Gaussian quadrature's order. But
they do depend on sign — negative or positive and to be exact, on distribution of negative and
positive coefficients in [K]. Nevertheless, investigation of the nodal temperatures (chosen
ones has been gathered in Table 1) has confirmed the fact that, the results are correct.

Table 1: Comparison of chosen nodal temperatures (second order quadrature).

Self-made code in MatLAB | Patran

Node: Nodal temperature, °C:
106 149.9999 150.0000

95 88.8889 88.8888

80 72.2222 72.2221

56 127.7777 127.7780

14 122.2221 122.2220

1 50.0000 50.0000

As one can notice, the results are nearly the same with some negligible differences after third
decimal place. Obviously, the code, in this particular case, works properly.

3.1.2 Mixed Dirichlet's and Neumann's Boundary Condition.

Next thing that had to be done, was implementation of the BC of the second kind (imitating
the heat flux), crucial to the next stages of this work. In this case DBC remained unchanged

and NBC has been added. Normal heat flux (g, = 40000 %) has been prescribed to northern
edge of the 24 — th element (see Figure 9).

From the point of view of the heat flux (normal to the boundary), the edge to which it is
assigned is a single line described by nodes 98, 99 and 100. Single line means one
dimensional case. For that reason an approximation of the edge in local coordinates system
has been done. That requires different shape functions, new Jacobian and new set of the
Gaussian points. Further implementation of the NBC (RHS coefficients) is carrying out
according to Eq.(15).

Temperature fields obtained from MATLAB and PATRAN are presented in Figure 11. On the
left hand side of the plate DBC (50 °C) is prescribed that keeps applied there temperature
(cools the plate), second DBC (on the right side) holds there 150 °C. Applied heat flux to the
northern edge of the 24 — th element is sufficient to locally heat the plate to temperature over
200 °C. The isotherms are unsymmetrical due to two different (but symmetrically oriented)
DBCs.
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Figure 11: Temperature distribution obtained from: MATLAB (left hand side) and PATRAN
(right hand side). Mixed BC.

Table 2 shows chosen nodal temperatures of the considering case obtained with 2" and 3™
Gaussian quadrature's order. Nodes to which the NBC is applied are set in bold.

Table 2. Chosen nodal temperatures obtained with MATLAB and PATRAN.

Self — made code in MATLAB PATRAN
Quadrature's 9 3 3
order

Node: Nodal temperature, °C:

106 149.9999 150.0000 150.0000
100 200.8242 200.7404 200.7380

99 2125521 211.8979 211.8959

98 192.5137 192.4287 192.4279

95 127.5782 127.6529 127.6530

80 92.6374 92.6137 92.6132

56 156.7796 156.7883 156.7879

14 150.0737 150.0577 150.0570

1 50.0000 50.0001 50.0000

It is easy to notice that, second order quadrature is not accurate enough in case of mixed BC
or pure NBC, but in case of pure DBC is sufficient. Moreover, the closer to the nodes that
NBC is prescribed to (98, 99, 100), the higher differences between the nodal temperatures are.
All errors were calculated with use of Eq.(18) and take the maximum values directly at NBC
—nodes and are negligible after exceeding a certain distance (from the NBC), see Figure 12.

It is clear that error's distribution concentrates in region of NBC and spreads in all available
directions. Despite the fact that, applied DBCs are at varying distances from the NBC, error
distribution is almost perfectly symmetrical. At the nodes where DBC is prescribed, those
differences are negligible (see Table 2, nodes 1 and 106).
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Figure 12: Graphical interpretation of the errors' distribution due to applying the NBC with
use of the 2" order Gaussian quadrature in comparison to the 3" order quadrature.

Obviously, 2" order quadrature does not provide satisfying accuracy in contrast to the 3"
order quadrature that simultaneously involves slightly higher computational effort (instead of
4 GP points there are 9 for 2D case). Because of the accuracy, 3 order quadrature has been
permanently implemented in the program.

3.2 3D benchmark.

At this phase, extending 2D FEM to 3D was necessary. Main difficulty was finding proper
formulas. In the literature 2D cases are described in detail, but in most cases when it was
coming to 3D, authors just limited themselves to a perfunctory statement, that all formulas are
similar to 2D. As it turned out later, they were right. Nevertheless, stiffness matrix assemblage
provided a lot of difficulties. At this phase, again, development of the code proceeded step by
step in order to evade mistakes that could be hard to find.

Analysis setup and material properties:

e Thermal conductivity k = 25
e Density p = 1091 %.
e Specific heat ¢ = 900

e Time step At = 20 s.
e Time of analysis (total time)tt = 2500 s.

w
e Heat flux g, = 40000 —

w
m°C’

]
kg °C’

Applying the BCs has been carried out in the same way as for 2D benchmark in the
MATLAB. The geometry has been created in PATRAN together with the BCs and imported
to the MATLAB. A cuboid, presented in Figure 13, consists of 60 hexahedral elements and
406 nodes.
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Figure 13: 3D geometry prepared with PATRAN and prescribed all boundary conditions.
Heat flux were applied later, in the next analyzes.

3.2.1 Dirichlet's Boundary Condition, steady — state.
In this case DBC was ascribed at three regions:

e lower X —Y plane: 50°C (first),
e upper X —Y plane: 150°C (second),
e oneelement in X — Z plane: 250°C (third).

Three different DBCs are prescribed in order to eliminate special case described in chapter
3.1.1concerning pure DBC in 2D, where values of coefficients in stiffness matrix did not have
any impact on the solution. Third DBC prevents such situation. Figure 14 shows temperature
distributions obtained from PATRAN and MATLAB. Unfortunately, rotating a 3D figure in
MATLARB is limited so setting similar view to PATRAN's figure is not possible. Third DBC
(250°C) makes isotherms irregular and much more concentrated on the wall it is prescribed to,
especially between the first DBC and the third.
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Figure 14: Temperature distribution obtained from: MATLAB (left hand side), PATRAN

Temperature, C

(right hand side). Steady — state, triple DBC.

Table 3 presents chosen nodal results from MATLAB and PATRAN. As one can see, 3"
order quadrature applied to MATLAB's code is sufficient and allows for getting accurate

temperatures in comparison to PATRAN.

Table 3: Results from MATLAB (3rd order quadrature) and PATRAN.

Self-made code in MATLAB | PATRAN
Node: Nodal temperature, °C:
1 49.9999 50.0000
50 50.0000 50.0000
100  |92.9081 92.9082
150  |166.0193 166.0200
200 | 168.7079 168.7079
250  |138.8943 138.8939
264 |135.7371 135.7370
300 |159.2606 159.2610
350 |149.0673 149.0670
400  |150.0000 150.0000
406 |150.0000 150.0000

This benchmark proved that, the stiffness matrix [K]in 3D case has been assembled correctly.
Otherwise, corresponding nodal temperatures would not be consistent. The differences
between them are negligible.
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3.2.2 Mixed Boundary Condition, steady - state.

In this case, the correctness of applying mixed BC has been verified. To triple DBC described
in chapter 3.2.1, NBC has been added for the following elements: 34, 35, 46, 47 (presented on
Figure 13). Figure 15 presents graphical interpretation of the obtained temperature fields
provided by MATLAB and PATRAN. Applied heat flux, is sufficient for increasing the
maximum temperature to higher value than third (the highest) DBC.

a) b)

Temperature, C

400

350

Temperature, C

400
0.4
02
02 T

Figure 15: Temperature distribution with triple DBC and single NBC (mixed BC). a) NBC
side, MATLAB, b) NBC side, PATRAN, c) 3" DBC side, MATLAB, d) 3" DBC side,
PATRAN.
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In Figure 15 c) and d), one can notice rectangular shape slightly brighter than its nearest
surroundings — it is third DBC (250 °C) applied to the four chosen elements' surfaces. To the
lower base (lower X — Y plane) first DBC is prescribed, what is confirmed by dark shade of
gray. Similarly upper base (upper X — Y plane) to which second DBC is prescribed and which
shade corresponds to 150 °C. Big bright stains in Figure 15 a) and b) present applied heat flux
and are located near the same edge. Except for the number of isotherms, figures from the
MATLAB look similarly to those from the PATRAN. Chosen nodal temperatures are
presented in Table 4 and are nearly the same.

Table 4: Results from MATLAB (3rd order quadrature) and PATRAN. Mixed BC.

Self-made code in MATLAB | PATRAN
Node: Nodal temperature, °C:
1 49.9999 50.0000
50 50.0000 50.0000
100 125.7416 125.7409
150 192.7073 192.7070
200 206.0997 206.0989
250 266.3079 266.3060
264 269.3892 269.3880
300 187.2779 187.2780
350 188.7256 188.7250
400 149.9999 150.0000
406 149.9999 150.0000

This benchmark proved that 3 order quadrature is sufficient to obtain results that are
comparable to PATRAN's. In addition to that, stiffness matrix assembly (3D) has been carried
out properly as well as applying of the NBC (2D — surface).

3.2.3 Mixed Boundary Condition, transient, CMM and DLMM.

The next step was an implementation of the BDM - transient heat transfer equation (Eq.(16))
in place of steady — state equation (Eq.(19)). Second and third DBCs (150°C and 250°C) have
been removed. First DBC (50°C) remained and simultaneously this temperature was an initial
value also. NBC remained unchanged as well as density, TC and all others. The following
figure (Figure 16) is a set of two figures from MATLAB and two from PATRAN. It presents
temperature distribution at 20 and 2500 second of heating a cuboid with heat flux. The
temperature increases gradually around the area to which NBC is applied. Because of the first
DBC that holds 50°C on the basis of the presented cuboid, upper part of the solid heats up to a
much greater extent. Back side, however, still remains 'cold' but it is only a matter of time
before the temperature become more uniform. It is noteworthy that steady — state has not been
achieved.
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Figure 16:Temperature distribution from MATLAB (left hand side) and PATRAN (right
hand side): a) and b) after 20 s; ¢) and d) after 2500 s.

As one can see, PATRAN's shade interpolation looks smoother. Nevertheless, the temperature
distribution in both cases is similar. In

Table 5 are presented results from MATLAB and PATRAN. Setup of the analysis was the
same in both cases. Node to which the NBC is applied is set in bold. Calculations have been
carried out with CMM and with use of factorization algorithm written by Timothy Davis [20].
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Table 5: Results from MATLAB and PATRAN. Single DBC and NBC. CMM.

MATLAB PATRAN
Time,s:| 20 | 1500 2500 20 | 1500 2500
Node: Temperature, "C: Temperature, “C:
1 50.0000 [50.0000 |50.0000  |50.0000 |50.0000  [50.0000
50 50.0000 [50.0000 |50.0000  |50.0000 |50.0000  |50.0000
100  |50.1069 |61.9589 |72.1512  |50.1068 |61.9588  |72.1509
150  |49.9937 |57.41512 |71.0562 |49.9937 |57.4151  |71.0560
200  |49.9918 [63.5700 |80.9149 [49.9918 |63.5698  |80.9146
250  |51.9898 [133.0161 |161.7480 |51.9896 |133.0149 |161.7469
264  |82.2932 |288.2891 [319.2235 |82.2923 |288.2869 |319.2210
300  |50.0164 |63.5048  |84.1807  |50.0164 |63.5046  |84.1801
350  |51.0058 |103.2670 |134.5854 [51.0057 |103.2669 |134.5850
400  |49.3207 |95.0306  |128.3418 |49.3207 |95.0303  |128.3410
406 |48.6141 |109.3724 |143.0194 |48.6141 |109.3720 |143.0180

Nodal temperatures in both cases are nearly the same. Because of the negligible impact of the
mass matrix lumping on a calculation time it has not been taken into account at this stage.
However, in this particular case lumping has serious impact on results. Table 6 shows nodal

temperatures after mass matrix lumping involved.

Table 6: Results from MATLAB and PATRAN. Single DBC and NBC. DLMM.

MATLAB PATRAN

Time, s: 20 1500 2500 20 1500 2500
Node: Temperature, °C: Temperature, °C:

1 50.0000 50.0000 49.9999 50.0000 50.0000 50.0000
50 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
100 50.0047 61.1171 71.2368 50.0047 61.1170 71.2367
150 50.0000 57.6899 70.8089 50.0000 57.6898 70.8087
200 50.0033 64.0506 81.0321 50.0033 64.0503 81.0317
250 50.0082 130.0064 159.7537 |[50.0082 130.0050 [159.7519
264 51.3226 282.8759 316.1018 |51.3230 282.8739 |316.0989
300 50.0141 62.9922 82.888695 |50.0141 62.9921 82.8883
350 50.2543 102.7736 134.0306  [50.2542 102.7730 [134.0299
400 49.8913 91.7538 125.2727 [49.8913 91.7536 125.2720
406 50.8818 105.5617 139.8922 |[50.8816 105.5609 [139.8910

It should be noticed that lumping introduces some errors. In case of early iterations such error
reaches even 37 % (Table 7) and decreases over time. The temperature at node 264 in the first
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iteration (20 s) with CMM equals to about 82.3°C while the temperature at the same node and
iteration, but with DLMM, is equal to about 51.3°C. This gives the difference of 30°C (37 %).
Research project (described in chapter 1.1) requires as much accuracy as possible and,
unfortunately, lumping noticeably decreases program's reliability simultaneously without
providing any benefits (for instance, shorter calculation time).

Table 7: Errors generated by mass matrix lumping.

Node: MATLAB PATRAN
Error, %: Error, %:

1 0 0 3.8E-07 |0 0 0

50 0 0 0 0 0 0

100 0.20 1.36 1.27 0.20 1.36 1.27
150 0.01 0.48 0.35 0.01 0.48 0.35
200 0.02 0.76 0.14 0.02 0.76 0.14
250 3.81 2.26 1.23 3.81 2.26 1.23
264 37.63 1.88 0.98 37.63 1.88 0.98
300 0.00 0.81 1.53 0.00 0.81 1.53
350 1.47 0.48 0.41 1.47 0.48 0.41
400 1.16 3.45 2.39 1.16 3.45 2.39
406 4.66 3.48 2.19 4.66 3.48 2.19

3.3 Target geometry.

Previously carried out tests have shown that, the program works properly so from this
moment it was treated as a 'black box'. This approach is dictated by large number of nodes
(and data in general) what indicates much more difficult debugging. An additional function
had been implemented for adjusting the diameter of the laser's spot which, during the
measurements, may be changed. Function for proper locating of the heat flux had been added
also. At this phase, real sample's geometry (that will be used in the future in the project) and
real heat flux (heat flux that actually can be applied during the measurements) have been
modeled in Ansys Workbench and were used as final benchmark which includes:

e mass matrix lumping impact on the solution,

e comparison of the Ansys' and the developed code's calculation times and memory
usage,

e comparison of different factorization methods,

e comparison of factorizations and PCG,

Additional example including quarter of a cube has been investigated also.

All of the following analyzes were carried out with use of the same hardware and software:
Intel® Core™ i7-3770 CPU @ 3.40GHz 3.4GHz with 8Gb RAM on 64-bit operating system
Windows 7 SP1, Ansys 16.2 (student license), MATLAB 7.9 2009b (academic license).
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The geometry includes whole sample showed at Figure 17thatcube with dimensions 0.05 x
0.05 x 0.05 m. The mesh is obtained with Sweep method. Number of elements: 7085. Number
of nodes: 31150.

Figure 17: Whole sample. Emission face is marked with the circle.

It should be stressed that, the elements of the mesh presented above has low quality and the
mesh is insufficiently fine so the results are not accurate. However, main purpose of this
analysis was to check if the developed program gives the accurate results in comparison with
Ansys.

Benchmark sample's material is overwritten structural steel in Ansys Workbench with the
following properties:

e Density — 1091 kg/mg.
e Orthotropic TC:
o X:55W/ o
o Y:55W/ o
o z:55W/ o
e Specific Heat — 900 ]/kg oC

All calculations were carried out with the same setup which consists of:

e Laser's beam radius: 0.0005 m.

e Laser's heat flux: 8.5158¢+007 W/,,,.
e Initial temperature: 18°C.
e Laser emission time: 0.19 s.
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However, two cases were analyzed with different number of iterations and time steps:

e Short — 362 iterations.
e Long - 436 iterations.

More information about considered analysis' variants can be found in Table 8. In case of long
analysis, IR camera recording time steps are in random order, so factorization had to be
performed almost every two iterations — this means increased computational effort.

Table 8: Specification of the performed analyzes.

Analysis' variants.

Short: Long:
Steps: | Time step, s: Time, s: |Steps: | Time step, s: Time, s:
190 0.001 0.19 190 0.001 0.19 Laser's emission.
1 0.0012 0.1912 |1 0.0009 0.1909 Indirect time step
- - - 1 0.0011 0.192 '
166 0.0018 0.49 125 0.0018 0.417 Ty
1 0.0018 0.4918 |1 0.007 0.424 8 &
1 0.0019 0.4937 |1 0.008 0.432 8 o
1 0.002 04957 |1 0.015 0.447 SE
1 0.0021 0.4978 |42 0.016 1.119 2E
1 0.0022 0.5 68 0.017 2.275 > 2
- - - 3 0.018 2.329 S g
- - - 1 0.019 2.348 2
- i i 2 0.026 2.4 g &

3.3.1 Results — full cube.

Figures below (Figure 18, Figure 19and Figure 20) present results of most accurate methods.
For MATLAB it is factorization with CMM and for the Ansys it is direct solver with CMM as
well. Only heated surface is presented. Additionally, Figure 18, Figure 19 and Figure 20 have
different scales. If they had not been different, due to high temperature difference (over
5400°C) Figure 18 and Figure 20 would not have been readable (there would not have been
anything to see).

Figure 18 shows numerically obtained temperature distributions in first time step (after 0.001
s) in MATLAB and in Ansys respectively. This figure provides important information: in
MATLAB, location of the applied heat flux is the same as in Ansys (what means previously
added function works well), diameters of the obtained bright dots are not noticeably different
from each other.
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Figure 18: Temperature distribution at 0.001 s.
MATLAB (left hand side): Max: 317.878°C. Min: -34.432°C.
Ansys (right hand side)Max: 318.64°C. Min: -36.861°C.

Negative temperatures occurred due to way of applying NBC. In case of serendipity 8 — node
quadrilateral elements (surface of hexahedron to which NBC is prescribed), coefficients
corresponding to corner nodes are negative. When NBC is applied to several adjacent
elements (so they have common nodes) the negative coefficient in RHS (in case of common
corner node) is sum of negative coefficients from all elements that this particular node
belongs to. In addition to that, those coefficients in RHS depend on heat flux (in this analysis

it is 8.5158e+007 W/m) and on det[J]?°. So huge heat flux in comparison to the surface (it is
66.83 W) and very short time step results in negative temperatures at the corner nodes of
specified surfaces of the boundary elements.

Figure 19 and shows numerically obtained temperature distributions in last iteration when
NBC is applied (0,19 s) — end of laser's emission (maximum temperature during the whole
process).

Temperature, C B: A: 7085na31150
Temperature

Type: Temperature
Unit: °C

Time: 0,19
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Figure 19: Temperature distribution at 0.19 s.
MATLAB (left hand side): Max: 5477.259°C. Min: -8.904°C.
Ansys (right hand side) Max: 5479.3°C. Min: -8.825°C.
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Considering now again the temperatures, one should notice that the maximum temperatures
are extremely high. Main reason for this situation is that only NBC was applied, with no heat
losses due to radiation and convection. Another thing worth mentioning is the negative
temperatures. Obviously 0.19 s is too short time interval to model heat flux properly

(physically).

Figure 20 shows numerically obtained temperature distributions in last iteration of the short
analysis' variant.

Temperature, C B: A: 7085na31150
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Figure 20: Temperature distribution at 0.5 s.
MATLAB (left hand side): Max: 191.329°C. Min: 17.999°C.
Ansys (right hand side): Max: 191.62°C. Min: 17.999°C.

-0.025

In this case all temperatures are positive, moreover minimum temperatures are equal to the
initial temperature. Differences between corresponding to each other nodal temperatures are
negligible also. This leads to the conclusion that, the results become more reliable after
switching off the laser's source (NBC). Obviously use of the results from the final iterations
(some time after the end of the laser's emission) for determining the TC will provide
maximum accuracy. Moreover, spot's diameter noticeably increased, mainly due to time (the
heat has time to spread) and smaller temperature difference (18 — 191°C) which affects the
color scale (displaying the results).

3.3.2 Solvers' performances — full cube.
Simulations in MATLAB have been carried out with use of two methods:

e Direct method with use of factorizations (LU, LDL', Cholesky, QR).
o lterative method with use of PCG provided by MATLAB [21] with no preconditioner.

Somehow, at least in MATLAB 2009b, preparation of the preconditioner takes much longer
than the analysis with use of PCG without preconditioners, so it has been used without them.
Another disadvantage of MATLAB's PCG is its syntax, namely, while no preconditioner is
used, change of the initial guess becomes impossible due to the lack of input arguments
required by the function to work. When initial guess is not defined, PCG starts each iteration
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from O what leads directly to lose of the efficiency. In other words, to define the initial guess
all other input arguments of the function are necessary.

In further analyzes Ansys' direct method with Consistent Mass Matrix has been assumed as
the one providing an exact solution. All other methods were referenced to it. Moreover, in the
following part several abbreviations appear with common pattern Software_method_mass
matrix:

A _d_cmm (Ansys_direct_Consistent Mass Matrix),
A_d_dlmm (Ansys_direct_Diagonally Lumped Mass Matrix),
A_it_cmm (Ansys_iterative_ CMM),

A_it_dlmm (Ansys_iterative_DLMM),
ML_chol_cmm (MATLAB_Cholesky CMM),
ML_chol_dlmm (MATLAB_Cholesky DLMM),
ML_ldl_cmm (MATLAB_LdL' CMM),
ML_IdIl_dimm,

ML_lu_cmm (MATLAB_LU CMM),
ML_lu_dimm,

ML_gr_cmm (MATLAB_QR_CMM),
ML_pcg_cmm.

Figure 21 presents accuracy of Ansys' direct and iterative solvers with and without mass
matrix lumping. All errors were calculated with Eq.(18). Differences have been computed for
all nodes corresponding to each other and then mean value was taken into account. As the
A _d_cmm has been chosen as a reference solution, it lies directly on the abscissa.

0,00007

0,00006

0,00005

0,00004

BA ddimm
0,00003 -

B A_it cmm

Average error, %

0,00002

HA_it_ dimm
0,00001

, 1l

0,001 0,19 0,5 24

Time, s
Figure 21: Average differences in chosen time steps. Only Ansys' solvers included.

As one can notice, all of the Ansys' solvers are very accurate because of insignificant results'
differences. Nevertheless, those differences increase over time until NBC is switched off and
then their stabilizes themselves.
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Figure 22 presents accuracy of solvers used in MATLAB. Average differences are calculated
in the same manner as in case of Ansys' solvers described above.
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Figure 22: Average differences in chosen time steps. MATLAB.

It is important to notice that, all factorizations with use of CMM have the same accuracy.
Similarly factorizations with use of DLMM. Differences between them are much higher than
in case of Ansys' solvers. Moreover, mass matrix lumping has significant impact on the results
contrary to the lumping in Ansys. It also should be noted that in both cases differences grow
with time due to the growth of the nodal temperatures. Obviously, NBC applied in MATLAB
IS burdened with inaccuracy.

Table 9 contains the measured analyzes times and required memory of all tested methods of
solving systems of linear equations. In case of ML_gr_cmm and ML_pcg_cmm long analysis
variant has not been carried out due to very long analysis time of the short variant. Required
memory as well as analyzes times for Ansys' solvers have been found in solver output files
(located at the bottom of folder with project's files). In case of MATLAB, required memory
has been computed as a sum of memory used by all variables existing in the workspace right
after factorization or first iteration (in case of PCG).

Table 9: Analysis time and required memory by tested methods.

Short: Long:
Method: Analysis time, | Requiredmemory, |Analysis time, | Requiredmemory,

S: Mb: S: Mb:
A d_cmm 649.0 174.0 759.3 174.0
A d_dlmm 628.8 174.0 746.9 174.0
A it cmm 629.4 174.0 743.4 174.0
A_it_dlmm 624.4 174.0 753.5 174.0
ML _chol_cmm 537.7 541.2 882.2 541.2
ML _chol_dlmm 530.3 515.7 884.0 515.7
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ML_Idl_cmm 594.7 547.6 1000.4 547.6
ML_Idl_dlmm 592.0 522.1 1000.1 522.1
ML_lu_cmm 410.6 992.1 983.8 992.1
ML_lu_dlmm 401.8 966.7 991.3 966.7
ML gr_cmm 2512.8 1325.5 - -
ML_pcg_cmm 1246.9 55.0 - -

Figure 23 presents analyzes times obtained with all tested methods. QR factorization and
MATLAB's PCG (with no preconditioner) have significantly worse performances so they
have been omitted in the short analysis with DLMM and in the whole long variant. Presented
times contain all computational processes from the very beginning to the end of the analyzes.
In Ansys it is from the start of the solution to its end and in MATLAB from import data from
Ansys' solver output file .dat through preparing all necessary matrices (building system of
equations) to the end of calculations. It is important to keep in mind that, the MATLAB used
to the analyzes has no parallel computing toolbox, so only one core has been used. For this
reason all times concerning analyzes carried out in Ansys are the total CPU time summed for
all threads (it can be also found in solver output file).

2500,0
2000,0
" A d
o .
£ 15000 WAt
prr}
= ML_chol
_g .
T 10000 =ML IdI
£ _|
HML lu
500,0 - -
HML_gr
0,0 - m ML pcg

CMM DLMM

Mass matrix
Figure 23: Analyzes times of all tested methods — short variant.

It is important to notice that, mass matrix lumping has no significant effect on the analyzes'
times. It confirms the fact known from the literature [16], that in case of implicit scheme (no
mass matrix 'inversion’) lumping has no major sense. What is more, the program with use of
LU, LdL" and Cholesky factorizations is slightly faster than Ansys (short variant).

Figure 24 presents times of analyzes used in long variant of analysis. Five methods were
tested in total.
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Figure 24: Analysis time of all tested methods — long variant.

In contrast to the short variant (Figure 23), Ansys in this case has better performance than the
code written in MATLAB. Furthermore, once again times of the analyzes hardly depend on
the mass matrix lumping which, in turn, seriously affects the results in case of the MATLAB.
Additionally, LU factorization was the fastest method (in MATLAB) in short variant but in
this case the Cholesky turned out to be faster. Explanation to this is as follows — solver written
in MATLAB saves factorized matrices of different time steps to the hard drive as .mat files in
temporary directory. Time consumed by saving as well as loading these matrices highly
depends on their size. LU factorization is almost twice the size of the Cholesky factorization
so saving and loading takes more time. Such an approach has sense in case of small meshes
(like in this analysis) when saving and loading factorized matrices takes less time than
carrying out whole new factorization and when time steps are not very diverse (infrequent
saving, frequent loading of necessary factorized matrices). For instance, Cholesky
factorization takes about 10 s, saving takes about 15 s but loading only about 2 s (these times
are estimated, because each loading or saving takes different time due to temporary CPU
usage by other processes).

Figure 25 presents memory used by variables. Ansys' solvers alone are far more economical
than those written in MATLAB except for PCG but, as it was mentioned before, in MATLAB
2009b it had poor performance in comparison to the factorizations.
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Figure 25: Memory used by tested methods.

Figure 25 does not show this clearly, but mass matrix lumping allows to save about 25 Mb of
memory in case of considered small mesh (see Table 9). It is negligible advantage. To state if
Ansys actually is more economical than the program written in MATLAB, one should take
into account one additional factor, namely, memory requested by the software itself. In Table
10is summarized minimum amount of memory needed to carry out the necessary calculations.

Table 10: Memory required to run the analysis.

Ansys: Memory, Mb:

Workbench: 280*
Mechanical: 240*
Solver: 2112
Total: 2632
MATLAB: 500
Variables: 600**
Total: 1100

* estimated value.

** estimated value on the assumption of the Cholesky or LDL factorization in case of similar
number of elements as in already considered mesh.

To run the thermal analysis with use of the Ansys, one has to open Workbench, Mechanical
and additionally start the solver. Unfortunately, during starting the solver Ansys allocates
2112 Mb of RAM although in cases described earlier, uses only 174 Mb. MATLAB, in turn,
requires more memory during computations but, after all, smaller amount of available
memory will met the requirements. What is more, if MATLAB is started as a command line
alone, required memory reduces from about 500 Mb to a little over 100 Mb. Such approach
allows to perform even complex numerical analyzes with use of old hardware when the
available memory is limited.
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In order to check impact of saving factorized matrices to the hard drive on the solver's
performance, two most promising methods (LU and Cholseky) have been chosen and tested
once again. In this analysis, solver written in MATLAB does not save any matrices to the hard
drive. In Table 11are gathered analyzes times and memory usage of the considered methods.

Table 11: Analyzes times and memory usage of LU and Cholesky factorizations in case of
modified solver.

. Long:
Method: Analysis time, s: | Required memory, Mb:
A d cmm 759.3 174.0
ML _lu_cmm 1044.1 992.1
ML_chol_cmm 749.4 541.2

Figure 26 presents graphical comparison of the analyzes times of Ansys and two chosen
factorizations in MATLAB. Long analysis.
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Figure 26: Solver performance with saving factorizations to the hard drive and without in
comparison to Ansys' direct solver.

In case of LU factorization, solver which saves factorized matrices to the hard drive is slightly
faster than one without saving. However, in case of Cholesky factorization the situation is
contrary. As it was mentioned before, memory usage of LU is almost twice as the Cholesky,
so saving and loading prepared matrices improves efficiency of the solver (instead of doing
whole new factorization), but it is still much slower than Ansys. On the other hand Cholesky
factorization based solver improved its efficiency after switching off saving and loading
factorized matrices. Furthermore, its efficiency is slightly better than Ansys' direct solver.

Memory usage of these methods remained unchanged. From the viewpoint of the project, the
analysis time and accuracy of the described program are crucial. However, one cannot forget
about memory usage. In case of more complex meshes with increasing number of elements,
memory requirements of the direct solver grow rapidly — double number of nodes results in,

189



approximately, fourfold increase in the size of the [K] and [M]. Excluding all other arrays, it
gives 8 times more memory required to store these matrices (not mentioning the time required
to build them), what affects the final performance (time needed to assembly and later for
solving system of equations). Analysis of the solver always has to be supported by the
investigation of the memory usage.

3.3.3 Analysis setup, geometry and mesh —quarter of a cube.

Carrying out the calculations with use of the full cube is inefficient when geometry together
with boundary conditions are symmetric. In such a case, usage of part of a whole domain is
far more economical because it significantly affects the computational effort simultaneously
providing the same results. To do so, all body parts of the full cube have been suppressed
except for the ones belonging to chosen quarter. Because of Ansys that keeps suppressed
nodes, the selected quarter was re — meshed. As side research showed, the program written in
MATLAB coped with that case (suppressed nodes are present in stiffness and mass matrices,
but their coefficients are empty) and as a result, correct temperature field was obtained.
Whereas for all suppressed nodes it was "NaN" (Not a Number) instead of temperature value.
Analysis time differs from the one obtained after re — meshing and is a little bit higher.

0 0,005 0,01 (m)

Figure 27: Mesh of a quarter of the cube. 2015 elements and 9782 nodes.

Mesh of a quarter of the cube (Figure 27) consists of: 2015 elements and 9782 nodes and has
been generated in the same way as the mesh of the full cube. Whole analysis' setup remained
unchanged. To check, if the program works properly, short variant (362 iterations) has been
used.
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3.3.4 Results — quarter of a cube.

In general, results from both analyzes (full and quarter of the cube, see Table 12) are almost
identical which means that the program works properly in case of reduced domain along its
axes of symmetry. Once again, too short time intervals result in negative temperatures due to
negative coefficients in RHS vector. It should be noted that maximum and minimum
temperatures hardly differs from those obtained in case of the full cube. Similar mesh gave
similar results.

Table 12: Minimum and maximum temperatures of the full and quarter of the geometry.

Geometry: Full. ] Quarter.
Time. s: Tgmperature, 1 -
’ Max. Min. Max. Min.
0.001 318.64| -36.86 318.80| -36.79
Ansys 0.19| 5479.30 -8.82| 5488.50| -11.09

0.5 191.62| 18.00 191.39| 18.00
0.001 317.88| -34.43 318.06| -34.47
MATLAB 0.19| 5477.26 -8.90| 5486.38| -12.42
0.5 191.33| 18.00 191.17| 18.00

One should keep in mind that, the quarter has been re — meshed so its mesh differs from the
one just after suppressing all other unnecessary bodies (after re — meshing number of elements
increased by about 400) despite the fact that none of the mesh setup parameters has been
changed. The maximum temperatures in case of the quarter are slightly higher than in case of
the full cube. Obviously, in considered case, the results depend on the mesh so in the future
further investigation will be necessary.

Figure 28 shows average percentage differences between nodal temperatures corresponding to
each other. Once again, solution provided by Ansys direct solver without mass matrix
lumping has been assumed as the accurate one.
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Figure 28: Accuracy comparison of the selected factorizations and Ansys' direct solver.,

Again, accuracy decreases in the course of applying NBC and reaches its lowest value in the
last step before turning off the heat flux. Both factorizations have the same accuracy.

Table 13 contains analyzes times and memory usage of the selected factorizations in
comparison to the Ansys' direct solver. MATLAB clearly became more efficient than Ansys.

Table 13: Analyzes times and memory usage of the Ansys' direct solver, LU and Cholesky
factorizations. Quarter of the geometry. Short variant.

Method: Analysis time, s: | Memory used, Mb:
A d cmm 158.4 55
ML_chol_cmm|51.2 76.58
ML lu cmm |33.3 125.9

Figure 29 shows obtained times of the performed analyzes of the quarter of the geometry.
These times are calculated in the same manner as times provided by case of whole geometry

discussed before.
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Figure 29: Analyzes times of the tested methods of solving linear systems of equations.

Reduced mesh (and geometry) results in improved performance of the program. It should be
stressed that, use of the hard drive as a way of storing factorized matrices, in this analyzes, has
been permanently turned off. Figure 30 presents memory usage of the considered methods.
Used memory has been obtained in the same way as in the previous case.
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Figure 30: Memory usage of the tested methods of solving linear systems of equations.

As one can see, there is no major difference between Cholesky factorization carried out in
MATLAB and Ansys' direct solver. LU factorization requires memory the most
(approximately two times more than Ansys).

Finally, Cholesky factorization has been chosen as the method of solving Eq.(17) because of
its satisfying performance and memory usage in both tested variants. Mass matrix will not be
lumped due to serious loss of the accuracy and negligible impact on performance. Storing
temporary factorized matrices will not be used because of the Cholesky factorization
performance degradation.
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4 Conclusions.

Performance of the code is one of the most important factors in the developing program for
determining thermal conductivity in a way described at the beginning of this work. Such a
program have to be efficient, because during the analysis it will be called and executed many
times until convergence of the TC is reached. For example, the analysis takes 10 minutes for
poorly optimized program. To determine the TC the program has to be called 100 times. This
brings a total of 1000 minutes for one full analysis. Another program, much better optimized,
needs 7 minutes only for completing the same one — run analysis. It also has to be called 100
times, but total time required to complete the full analysis amounts to 700 minutes only. This
gives saving of 300 minutes which equals to 5 hours. This is a lot of time and that is why a
good performance is so important to this program.

Mass matrix lumping is one of the available options provided by commercial software so it
was tested in this work. Main cause for which it was not implemented, was lower accuracy of
the code and negligible impact on the performance.

Obtained results from the MATLAB with use of 3" order quadrature at phases 1 and 2 and
with NBC applied, differ from, approximateLy, 0°C to 1e-03°C in comparison to the values
provided by MSC.Patran. In case of the 2" order quadrature those differences are much
higher and they are from about 1e-03°C to 0.9°C. They reach maximum values at the nodes
to which NBC is applied and the smaller they are the further from the BC of the second
kind. In case of pure DBC those differences are negligible and do not depend on the used
quadrature's order.

In comparison to Ansys Transient Thermal (direct method without mass matrix lumping),
differences of the results are much higher and their maximum values are, again, at the nodes
to which NBC is applied. Global maximum differences are reached in the last step when NBC
is applied and amount to even about 12°C while maximum temperature is about 5500°C. After
NBC removal, those differences drastically decreased to about 1e-02°C or even less. The more
distant node is (from the NBC) the lower difference is between corresponding to each other
nodal temperatures provided by the Ansys' direct solver and factorization in MATLAB.

All of the Ansys' solvers (direct and iterative) were accurate with respect to each other
regardless of whether lumping was used or not. Most likely some additional unknown
procedure is performed, however manual does not refer to it.

Factorizations (direct method) have the same accuracy but they strongly differ from each
other in case of performance. The selection of the type of the factorization should be preceded
by the analysis of their efficiency for each particular case (humber of nodes in the mesh,
number of iterations, number of time steps, available memory). As an example, in short
variant LU factorization was the best but in long variant Cholesky was better.

Mass matrix lumping in case of implicit scheme (BDM) has no major sense due to its
negligible impact on the performance. On the other hand, it strongly affects the results
damaging the accuracy, especially in early iterations. Lumping becomes justifiable in case of
dealing with huge geometry with use of explicit scheme and when computation's time is more
important than the accuracy.
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Direct methods are faster and more accurate than iterative solvers but simultaneously they
require far more available memory.

Neumann's Boundary Condition, which simulates the laser, generates errors that grow with
time until it is turned off. The results from iterations after, approximately, 0.4 s from the
beginning of the numerical analysis, have very good accuracy and can be successfully used in
further computations.

Nature of the applying the NBC requires some amount of time to model temperature
distribution in a physical way.

During this work the program has been developed for the purposes of the project. This
program not only solves NBC — based transient heat transfer problems in orthotropic
materials, but also imports geometry data, exports solution data, has log module, error
reporting module and above all, is easy to manage, cheap (so to speak — free) and fully —
customizable. Furthermore, its performance as well as accuracy is not worse than Ansys'.
More information about the program features and capabilities can be found in Appendix A.

In the future, incorporation of the program into main algorithm for determining the TC will
have to be done. This will require the implementation of the calling (this program), data
managing and sharing(between the program and the main algorithm) procedures. In addition
to that, radiative heat losses will have to be implemented in order to make the obtained
temperature field more reliable. Last thing to do is to make density and specific heat
temperature — dependent.
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Streszczenie

W pracy tej opisano proces tworzenia pogramu opartego na Metodzie Elementow
Skonczonych a sluzacego do obliczania pola temperatury w ortotropowej probce 2z
wykorzystaniem warunku brzegowego Neumann'a. Program ten zostat stworzony na potrzeby
projektu prowadzonego w Instytucie Techniki Cieplnej w Gliwicach. Stanowi on wazng cz¢$¢
zautomatyzowanej procedury majacej wyznacza¢ wspdtczynnik przewodzenia ciepla badanej
probki poprzez dopasowanie rozkladu temperatury otrzymanego na drodze obliczen
numerycznych z rozktadem temperatury otrzymanym z pomiardw. Z racji specyfiki pomiarow
oraz samej procedury sterujacej cala analiza, stworzony program charakteryzuje si¢ duza
wydajnoscig porownywalng do wydajnosci Ansysa (dla tego samego przypadku),
wystarczajaca dokltadnoscia oraz przygotowaniem do sprzegnigcia z glownym algorytmem.
Najwazniejszymi cechami tego programu sg: modut do importu geometrii z Ansysa, modul do
eksportu danych dla algorytmu sterujacego, dwa pliki tekstowe umozliwiajace tatwe
zarzadzanie tym kodem (zwlaszcza w przypadku sterowania przez zewnetrzny program),
logowanie dziatania programu oraz raportowanie o biedach.

2 Autor przygotowal niniejszy rozdzial podczas pracy nad projektem dyplomowym
magisterskim wykonywanym przez autora w Instytucie Techniki Cieplnej na Wydziale
Inzynierii Srodowiska i Energetyki Politechniki Slgskiej pod opiekq dr inz. Arkadiusza Ryfy.
Prace byly prowadzone w ramach projektu naukowego realizowanego w Instytucie Techniki
Cieplnej.
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Appendix A

Features of the developed program

One can distinguish three main characteristic features of the code:

e Consistency — the code written in MATLAB is executed line by line, so it is logical
and without any unnecessary commands, for example clearing variable just to load it
again in another line. The same applies to the variables and external functions — they
are well named to make sense without thinking too much. Repetition of the lines of the
code is also eliminated, because this makes editing and debugging the code easier due
to lack of necessity of modifying additional lines.

e Simplicity and transparency — program has been written in such a way that it can be
easily debugged and modified. This has been achieved by the use of basic functions,
for instance 'For' loops instead of more sophisticated nested functions like ‘cellfun’ or
‘bsxfun’. In case of MATLAB, 'For' loop has better performance than most of the other
functions. Another thing that makes debugging easier is modular design. Grouping of
the code into smaller pieces responsible for strictly specified tasks is a good habit and
it helps one finding procedural errors.

e Forethought — this program can be easily extended with new functions and procedures
without major changes into already existing code.

The program is started with use of batch file to call MATLAB's command line and to declare
all necessary directories automatically. It consists of:

o startPanel_0 - main procedure which calls and coordinates all others,
o globalVar — structural variable storing all global variables (program’'s memory),
o var_GDefine_1 — import module, uses UserSettings.txt,
= import_NCoords_2 — subprogram for nodal coordinates import from
Ansys' geometry output files,
= import_Connectivity 3 — subprogram for connectivity matrix import
import from Ansys' geometry output files,
= import_MConstants_4 — subprogram for material properties import
from Ansys' geometry output files,
= import_FENodes_5 — subprogram for face and emission nodes import
from Ansys' geometry output files,
= import_USetup_6 — subprogram for user setup data import from
UserSetup.txt file,
o un_varDelete_ 0 — subprogram responsible for clearing all of unnecessary
variables from memory,
o MatCon - main subprogram for building system of equations,
= Ansys_N_order — function responsible for proper nodal reordering,
= Ansys_N_order_8n — function responsible for building connectivity
matrix in order to apply NBC,
= LaserRadius — function controlling laser's diameter,
= Ni — function with shape functions 20 — node hexahedron, PATRAN's
order,
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(@)

= Shape_functions_Patran_8n — function with shape function 8 — node
quadrilateral, PATRAN's order,

= dNdksi_Patran_20n — function with shape functions' 3d derivatives,

= dNdksi_PAtran_8n — function with shape functions' 2d derivatives,

Solver —main subprogram for solving linear systems of equations,

= Factorize — algorithm written by Timothy Davis,

=  MemoryCheck — function computing memory usage by variables in the
workspace.

Whole program is controlled with use the of two text files (Figure 31 and Figure 32):

e UsetSettings.txt — defining geometry file and its components to import:

O
O
O
O

nodal coordinates,

connectivity matrix,

material properties (disabled by default),
face and emission nodes,

e UserSetup.txt — defining setup of the analysis:

(@)

O O O O O O 0 O

density,

specific heat,

TC components X, Y, z,

laser beam radius,

laser heat flux,

initial temperature,

laser emission time,

camera recording start time,

camera recording times (in fact time increments)— this vector can be almost
freely long and that is why it is at the very end of the file.

The program checks for last modification date of UserSettings and UserSetup and compares
them with ones already stored as variables in structural array globalVar. If they differ from
each other then program overwrites them and executes proper procedures of import (when
UserSettings date variable is overwritten) and/or overwrites setup variables (when UserSetup
date variable is overwritten). In special case while such date variable or variables do not exist,
they are created as new ones and again all necessary procedures are executed.
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C:\Users\Mieszko\,Documents\Program_beta'UserSetup.txt - Notepad++
Pik Edvcja Szukaj Widok Format Skbadnia Ustawienia Makra Uruchom Fluging Okno G
cHHE v . BldmE|pe|ak| 2 s |EE |

Brew 30| Blnew 163] B solve out 3| Bl UserSetings 3. [ UserSetup. et z:!]

| o BHEB 5 B[ &mk(ae(nhs<BE551FE0EEREE= 1 sdensity (ka/u3)

e 300 B 73] B0 o ] [ UserSetings e 3] 1091
= - - - - sspecific heat (kd/kgK)
1 s is a file storing user' sectings.

300

MR OWDA om0 W

5gg - laser beam radius (m)
iz 0.0005
13 sgs - laser heat flux (U/m2)
14 225000000

15 3Tp - initial temperature
stype 1 if import of commectivity matrices is needed, 0 if it's met 518
Comnectivity Hatrix= 1 17 slaser emission time £l (s)
0.19

scemera recording start time tZ (s)
0.45

sstart camera dg (s)

0.0018

oW

N
stype 1 if import of waterial constants is needed, 0 if it's not

o

24 stype 1 if import of face £ emission nodes is needed, 0 if it's not 23 0.0019
5 Face_s_Emission _Nodes= 1 za  0.0020

25 0.0021
z6 0.0022

Figure 31: UserSettings.txt input file. Figure 32: UserSetup.txt input file.

All subprograms and functions are vectorized and optimized in order to achieve as high
performance as possible. Moreover, the program is fully automated — besides input text files
(UserSettings.txt and UserSetup.txt) does not require any other user interference. It should be
stressed that, with use of input files (that will be prepared by the main algorithm or user) it
can be easily managed by the external procedures.

Results are saving into specially created folder in working directory named
"Results_YYYY.MM.DD__hh.mm.ss", where " YYYY.MM.DD__hh.mm.ss" is current date
and time:

YYYY — year,
MM — month,
DD - day,

hh — hours,
mm — minutes,
Ss — seconds.

Results are stored as .dat files named "T(s).dat", where "(s)" is step number.

Figure 33 and Figure 34 show exemplary folder with exemplary files with results.
Additionally to these files, analysis' configuration file is attached.
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-ioix

|@ev | . = Biblioteki = Dokumenty ~ Program_beta - - m I Przeszukaj: Program_beta lg
Organizuj * o Obwdrz  Udostepnii = Pocztae-mail  Magraj  Mowy Folder = ~ [ .@.
e . .
' Ulubione —| Biblioteka Dokumenty

Rozmiest wedtug:  Folder
B Pulpit Program_beta

=1 Ostatnie miejsca

= Mazwa ~ Data modyFikacj Tvp Rozmiar =
j Dakumnenty
& e dysk . Factorize 2016-03-31 05:47 Folder plikaw
£l Ostatnie misjsca . Praca_magdi 2016-04-15 15:28 Falder plikdw
4. Pobrane . Results_2016.16.04__ 17.04.23 2016-04-16 17:09 Falder plikéw -
el Bibliotek || Ansys_M_order.m 2016-04-16 13:21
j Dokumenty
3 | Ansys_M_order_Sn.m Z016-04-30 13:14
fJ. rMuzyka
&) Obrazy | Ansys_M_orderZ.m 2016-04-15 08:21
&) Pobrane 1 Fconnectivity s 2016-04-30 13:15 Microsoft Office Acc...
B wideo [ Connectivity_20 2016-04-30 13:15 Microsoft OFfice Acc... 1
| dMdksi_Patran_gn.m Z016-03-12 17:25 Plik. M
) Grupa domowa || drdksi_Patran_zan.m 2016-03-11 09:04 Pkt
-
| . . . I . ——e et - e -
B Kernmnker ll g I I _’I_
Results_2016.16.04_ 17.11.06 Data modyfikacii: 2016-04-1617:15
J Falder plikdw

Figure 33: Folder containing analysis' results.

B Results_2016.16.04__ 17.11.06 B ] 55
‘G( )v | .= Dokumenty = Program_beta = Results_2016.16.04__ 17.11.06 - I@ll Przeszukaj: Resulks_2016.16.04_ 17... @
Organizuj v Udostepnij v Magraj  Mowy Folder - [ &
e . .
't Ulubione —{ Biblioteka Dokumenty .
Rozmigsc wedtug;  Folder
B Pulpit Results_2016,16,04___17,11,06
12| Ostatnie misjsca ]
= Mazwa ~ Data modyfikacji Typ Rozmiar =
j Dokumenty —
W G dysk || Tas3.dat 2016-04-16 17:15 Plik.DAT
L Ostatnie migjsca | Ta54.dat 2016-04-16 17:15 Plik DAT
& Pebrane | | 7355 dat 2016-04-16 17:15 Plik DAT
ﬁ Bibliateki | T356.dat 2016-04-16 17:15 Plik. AT
3 Dokumenty || T357.dat 2016-04-16 17:15 Plil. DAT
o Muzyka | | T358.dat 2016-04-16 17:15 Plik DT
=] Obrazy L | T359.dat 2016-04-16 17:15 Plik. AT
El] Pobrane fa || T3&0.dat 2016-04-16 17:15 Plil. DAT
B wideo | J7361.dat 2016-04-16 17:15 Pl DAT
L | T382.dat 2016-04-16 17:15 Plik. AT
0@ Grupa domowa
| Usersetup Z016-04-16 17:10 Dokument tekstowy

ot

"Mk arne kar ;I ‘I I

l Elernentdw: 363

Figure 34: Files .dat with results together with UserSetup.txt which stores analysis'
configuration.
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Each T(s).dat file contains: all nodes of heating surface, nodal coordinates, nodal temperatures
and, additionally, current analysis' time, current time step and current iteration number.
Exemplary T(s).dat file is showed in Figure 35.

ieszko',Documents'Program_beta'Results_2016.16.04__ 17.11.06%T362.dat - Notepad++

Pl Edycja Szukaj

“Widok Format Sktadnia  Ustawienia Makra Uruchom  Pluging  Okno 7

J o =N =) o®|*@ﬂﬁ1‘=¢‘ﬁﬁbﬁ‘ 2 ﬂ‘l—““lt-"‘.|_=_d

DERDIEEDBE||=

Br= .‘I = = -‘I B solve.out e [= T362.dat ﬂl

1 time: 0.5; dr: 0.002Z; iteration: 362

& ID. x v z T

4 64 0.00050000000 0.00000000000 0.00000000000 175.164459740093750
5 65 0.00035355339 0.00000000000 0.00035355339 174.116546630853370
6 13 0.00015922403 0.00000000000 0.00019922403 176.187653105468750
7 a7 0.000z25000000 0.00000000000 0.00000000000 176.675903320312500
= 124 -0.00000000000  0.00000000000 0.00000000000 177.229812622070310
2 125 -0.00000000000  0.00000000000 0.000z5000000 176.112836745117190
10 154 -0.00000000000  0.00000000000 0.00050000000 173.105255126953120
11 1383 -0.00000000000  0.00000000000 0.02500000000 15.000000000000000
1z 154 —0.00000000000  O.00000000000 0.01500000000 18.000000000000000
13 185 0.01500000000 0.00000000000 0.00000000000 15.003541946411133
14 156 0.02500000000 0.00000000000 0.02500000000 15.000000000000000
15 187 0.02500000000 0.00000000000 0.00000000000 15.000000000000000
16 1858 -0.00000000000  0.00000000000 0.00750000000 15.59332A5658603516
7 189 0.00750000000 0.00000000000 0.00000000000 26.8198581439208554
13 3988 0.02024370265 0.00000000000 0.0z060242654 15.000000000000000
12 33988 0.01696792455 0.00000000000 0.01551047435 15.000000000000000
20 3990 0.01178257736 0.00000000000 0.01747425433 15.000000000000000
21 35991 0.01415622973 0.00000000000 0.01440709669 15.000000000000000
&% 398z 0.01602632967 0.00000000000 0.01177859526 18.000000000000000

3993 0.017z26544917 0.00000000000 0.00902379243 15.000001907345633
24 39594 0.01515426717 0.00000000000 0.01537314945 15.000000000000000
25 3995 0.01870853746 0.00000000000 0.01309192490 15.000000000000000
26 3996 0.01970259617 0.00000000000 0.01001534321 15.000000000000000
27 39897 0.02004052807 0.00000000000 0.00652044916 18.000000000000000
Z5 3998 0.00825064582 0.00000000000 0.01549100361 18.000000000000000
22 38983 0.02087357568 0.00000000000 0.00463244915 15.000000000000000
30 4000 0.00526739836 0.00000000000 0.01912287685 18.000000000000000
31 4001 0.00458059675 0.00000000000 0.022Z08652187 15.000000000000000
SE 400z 0.00805659410z2 0.00000000000 0.02172023786 18.000000000000000
4003 0.011159600601 0.00000000000 0.021542820z20 18.000000000000000

J4 4004 0.014346964E5 0.00000000000 0.02172600465 15.000000000000000

Mormal text file ‘Iength 154819 lines : 756

Figure 35: Files .dat with results together with UserSetup.txt which stores analysis'
configuration.

Logfile.txt (Figure 36) is created in the main directory. All statements about executed or
skipped procedures are stored in that file. Also errors and warning reports as soon any occurs.
Memory usage and analysis time are also reported. Furthermore, logfile.txt and UserSetup.txt
are copied into results' folder to provide additional information about the process and its
configuration each time the analysis is performed.
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Z4  11:41:04 Removing unnecessary fields inside glokbalVar.

25 11:41:04 Removing completed.

Z6H  11:41:04 globalWar wariable saved.

27 11:41:04 ggtup file has changed - importing new sgtbup data.
28  11:41:04 Import of the getup data has been completed.

2% 11:41:04 Geometry and/or ggftup data have/has changed - creating new matrices.
30 11:41:24 MatCon: Matrices K, M, F & Tp are ready.

31 11:41:24 gStarting the analysis. This may take few minutes.
32 11:41:24 Currently used memory by wvariahles, Mh: 55.0089

33 11:41:43 Currently used mewmory by wvariables, Mh: 541.2169
34  11:49:59 Analysis has been completed.

35 Elapsed time is 537.678607 seconds.

36 Maximum possible array: 12763 ME (1.338e+010 hytes) *

37 Memory available for all arrays: 12763 ME (1.338e+010 bytes) *

38 Memory used by MATLAE: 1082 ME (1.14Z2e+00% bytes)

3% Physical Memory (RAM): 8056 ME (2.448e+009 bytes)

40

41 * Limited by System Memory (physical + swap file) awvailabkle.

4z Name 8ize Bytes Class Attributes
43

44 2 31150x31150 509826090 factorization chol sparse

405 =] 31150x1 245200 double

45 Coordinates 31150x4 998800 double

47 F 31150x1 245200 double

448 24 31150=31150 27464280 double sparse
49 M 31150x31150 27454280 double sparse
50 T 211505 1248000 double

51 T A11A0«1 249700 drubhle

Figure 36: Exemplary part of the logfile.txt. It provides information about executed or skipped
procedures, analysis' time and memory usage.
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