

Numerical analysis of the orthotropic sample for conductivity

tests

Mieszko Tokarski
1

e – mail: tomiesio@gmail.com

Key words: MATLAB, Ansys, FEM, Neumann's Boundary Condition, Factorization

Abstract

This work describes the development of a program based on the Finite Element Method for

the calculation of a temperature field in orthotropic sample with use of the Neumann's

Boundary Condition. Such a program has been created for the purposes of the project carrying

out in the Intitute of Thermal Technology in Gliwice, Poland. It is an important part of the

fully – automated algorithm for determining the sample's thermal conductivity by fitting

numerically obtained temperature field with its counterpart provided by the measurements.

Because of the specific nature of the measurement process as well as the main algorithm

itself, the developed program is characterized by high efficiency (comparable to Ansys),

sufficient accuracy and preparation for cooperation with the mentioned before fully –

automated algorithm. Most important features of the program are: module for geometry data

import (data is provided by the Ansys), module for the results export, the two control text files

for easy management by external procedures, logging and error reporting module.

1
The author have created the following chapter during the work on the master thesis carrying out in the Institute

of Thermal Technology in the Department of Energy and Environmental Engineering of the Silesian University

of Technology under the supervision of dr ing. Arkadiusz Ryfa. The work has been realised within the project

carrying out by the Intitute of Thermal Technology in Gliwice, Poland.

c©Instytut Techniki Cieplnej, Politechnika Śląska

Archiwum Instytutu Techniki Cieplnej Vol. 1 nr 1(2016) www.itc.polsl.pl/ArchiwumITC

Zawartość tej publikacji może byc wykorzystana na warunkach licencji Uznanie Autorstwa 3.0 Polska. Licencja pozwala na
kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa: autora,
tytułu rozdziału, nazwy serii, tomu, strony. Content from this work may be used under the terms of the Creative Commons Attribution
3.0 licence. Any further distribution of this work must maintain attribution to the author, chapter title, series title, volume, pages.

153

Nomenclature

Greek symbols

ξ, η, μ - natural coordinates

Ρ - density, kg/m
3

Δ - increase

∂ - derivative

Α - thermal diffusivity, m
2
/s

Latinsymbols

N - shape function

C - specific heat, J/kg K

k - thermal conductivity, W/(m °C)

𝑞 - heat flux, W/m
2

Superscripts

E - element number

N - Gaussian Point number

T - transposition

1D, 2D, 3D - 1, 2 ,3 dimensions

S - step number

Subscripts

i, j - nodal number

Abbreviations

BC(s) - Boundary Condition(s)

BDM - Backward Difference Method

CDM - Central Difference Method

CMM - Consistent Mass Matrix

DBC - Dirichlet's Boundary Condition

DLMM - Diagonally Lumped Mass Matrix

FDM - Forward Difference Method

FEM - Finite Element Method

GP(s) - Gaussian Point(s)

NBC - Neumann's Boundary Condition

PCG - Preconditioned Conjugate Gradient

TC - Thermal Conductivity

Notation

vectors and matrices are set in boldface

154

1 Introduction.

1.1 Background and motivation.

Most of widely known and used contemporary methods of determination of thermal

conductivities (TC) are, in most cases, very inaccurate, time – consuming, complicated or

have destructive character. A precisely determined TC is crucial in many engineering issues,

for instance: assessment of heat losses and gains, definition of allowable thermal working

conditions of a component or the entire machine and evaluation of thermal strains and

stresses. In the case of insulating materials, the TC has decisive impact on the material 's

quality. In general, in the literature are described many TC measuring methods with their

numerous variants, but certainly one can distinguish several major ones:

 Guarded hot plate – a solid sample is placed between two plates of which one is heated

while the other is cooled (or heated in lesser extent). After reaching steady – state,

necessary measurements and calculations are performed [1].

 Hot wire – a heated wire is inserted into the sample and then temperature change is
recorded. Density and heat capacity have to be known. At the end, plot of the wire's

temperature change versus logarithm of the time is used to calculate the TC [1].

 Modified hot wire – the wire is supported on backing so it does not require sample's
penetration [1].

 Laser flash diffusivity – sample's surface is heated with laser's pulse and infrared

camera records the temperature field [1].

 Magnetic resonance imaging techniques – relation between temperature and magnetic
field has been used in order to determine the thermal diffusivity [2].

Guarded hot plate method requires a lot of time until steady – state is reached. Hot wire

method, in turn, because of sample's penetration, can be applied to fluids, foams and melted

plastics [1] but not for solids. While the Laser flash method (see also Parker flash method [3])

is fast, reliable but requires preparation of the samples that are damaged during the

measurements due to high temperature. It is important to notice that most of them allow for

determining TC in isotropic materials only. Hence, need of developing more reliable as well

as more accurate methods arises, particularly in orthotropic or anisotropic materials case. An

example of one of the promising and innovative methods is described in [2]. In brief, it

constitutes a development of the Parker flash method [3] and also consists of heating a sample

with use of a laser flash (Figure 2) and recording (with Infrared Camera) the temperature

distribution on a heated surface. In the next stage numerical analysis is applied comprising

modeling this phenomena with use of dedicated algorithm and comparing temperature fields

(obtained both by experiment and by computations). Figure 1 shows schematic block diagram

of the described procedure. It should be stressed that, in order to properly fit experimental

temperature field with its numerically obtained counterpart, TC must be controlled during the

analysis. Briefly, TC has to be guessed and experimental results are used as a benchmark.

155

Figure 1: Schematic block diagram of the algorithm for determining the thermal conductivity
in orthotropic material. The program's place in the procedure is marked with ellipse. The

image has been taken from [2].

Usage of a commercial software like Ansys Mechanical, Ansys Fluent or MSC.Patran is, at

least, troublesome. Mainly due to the specific requirements provided by the nature of the

analysis. For instance, some difficulties occurred during modeling of heat transfer based on

the Neumann's Boundary Condition (NBC) in Fluent. Most probably the Finite Volume

Method (FVM) Fluent is using, is unsuitable for such phenomenon or there is a necessity for

some specific settings of the analysis. For now, Fluent provides far higher temperatures than

Ansys Transient Thermal (using Finite Element Method FEM). Such a situation confirms the

fact that using the commercial software can be problematic due to its own specific features

and requirements regarding the, for example, mesh or analysis setup. Furthermore,

cooperation of this software with external procedures can provide a lot of trouble as well. It

should be stressed that, for the purposes of the project it is necessary to allow for efficient

cooperation between different programs belonging to the procedure described in the next

paragraph. In this regard, developing of a self – made FEM code may be much better solution

than use of the complicated commercial software. Besides that, the licenses of such software

are expensive so in a situation when one has choose between commercial and free program

with comparable performance and accuracy, the latter is better choice.

First of all, whole numerical procedure has to be fully automated. Experimental results are

loaded into analysis setup file, then main program calls for a subprogram responsible for the

computations which are carried out in order to get numerical temperature field. This

subprogram prepares specific output files formatted in a desired way that next subprogram

can compare specified temperatures and, if it is necessary, change the TCs and repeat whole

procedure until convergence is reached.

156

Figure 2: A sample holder and dot of the laser beam.

The subject of this work is to create a fully automated program using the Finite Element

Method to solving heat transfer problems with use of the NBC. Such program will be used in

a procedure of determination of the TCs within the project described in [2]. Besides that, it

will have several important advantages over the Ansys. At first, in contrast to the complex

Ansys and its highly developed interface, managing this program will be much simpler due to

ordinary text files which are easy to create and edit with use of user defined procedures

written, for instance, in MATLAB or in FORTRAN. Secondly, results provided by the

program can be easily formatted in a required manner so their further processing will not

cause any additional problems – it is easy to achieve with use of user defined procedures

designed directly for this task and for this particular kind of the program. Additionally it is

always better when there is possibility of customization both of cooperating programs than

only one of them like it would have been if the Ansys was used instead of program developed

as the subject of this work.

First task that had to be done, was to choose the programming environment which would

allow relatively quick, easy and efficient developing of desired program. The choice fell on

the MATLAB [4] because of several important factors:

 a wide range of efficient and already implemented functions for managing data,

 easy developing own procedures on the basis of the MATLAB's functions,

 efficient computing of large matrices,

 easy and user – friendly debugging module,

 'Profiler' – tool facilitating the optimization of the code,

 File Exchange – free service for sharing files between MATLAB's users [5].

157

The next stage was proper application of the Finite Element Method (briefly described in

Chapter 2.1). To be sure, the FEM written in MATLAB works properly, several test cases

have been solved. Each of them had its own contribution into final result being finished

program for the purposes of the project. It was a long journey through MATLAB

programming environment, FEM's features and linear algebra needed to find a way of

efficient and accurate solving systems of thousands equations.

As it was mentioned before, the program is for the purposes of the project realized at the

Institute of Thermal Technology in Gliwice, Poland. A core problem is not a development of

such program, but achievement of desired accuracy and efficiency. It is problematic due to the

number of phenomena accompanying the process of laser's radiation. These phenomena are:

 radiation of the warmed sample' surface due to the laser beam,

 conduction inside the sample's material (TC is unknown),

 carbonization of the sample due to high temperatures.

Convection's impact is negligible. Radiation heat flow depends on a temperature to the fourth

power. That temperature rises to about several hundred Celsius degrees in less than 0.2 s.

Thermal conductivities are unknowns whereby they are additional complicating factor.

Moreover, due to high temperatures local carbonization of the sample occurs thus chemical

composition changes so material properties do as well. Besides that, sample's density, TC and

specific heat, all depend on the temperature in real case.

Another factor complicating the task is short time interval. Mentioned above phenomena are

very dynamic. Whole measurement process consists of three main stages:

 heating with use of the laser flash – lasts for about 0.2 second,

 removing the laser and replacing it with the Infrared (IR) camera in order to keep

precisely the same angle as during previous stage – lasts for about 0.3 s,

 temperature field recording – lasts for about two second, time steps depend on
recording times of IR camera (frames per second to be exact) and on the speed of

saving those temperature fields on a hard drive.

At this stage, the program for numerical modeling of the temperature field is under the

validation. In addition to that, importing required data, file for managing whole program,

monitoring of the executed procedures (logs) as well as extracting results in desired form are

already implemented. However, loss of the heat due to radiation and temperature – dependent

material properties still require further investigation on their impact on the solution.

2 Governing equations.

In the FEM transient heat transfer equation [6] is solved numerically. For orthotropic bodies

and constant TC, specific heat and density such equation takes the form

∇𝐤∇T + q v = ρc

DT

Dt

(1)

158

T is the temperature, 𝐤 is thermal conductivity represented by the following vector

 𝐤 = kx ky kz (2)

q v is internal heat source (in this work q v = 0), ρ and cstand for the specific heat and density
respectively.

2.1 The Finite Element Method.

Today solving complex mathematical problems of physics and engineering is possible using

numerical methods only. Amongst these methods certainly worthy of distinction is the Finite

Element Method – a powerful and widely used tool in the field of mechanics and heat

transfer. To get more information about FEM, please refer to [7], [8], [9] and[11]. Figure 3

presents main idea of the FEM used in this work. First, main domain – a cylinder as an

example of a solid that can be easily presented and simultaneously has irregular shape – is

divided into sub domains (finite elements – that is the first approximation of the domain).

Then it is assumed that all finite elements are hexahedrons (parent elements – this is second

approximation of the domain). For each parent element Jacobian together with its

determinants is computed as well as stiffness matrix of the element Ke. Simultaneously mass

matrix of the element Me is determined. Next, these matrices are assembled into global K and

M respectively. Right Hand Side (RHS) vector F stores coefficients of the NBC determined

with GPs, nodal coordinates, shape functions for a 2D case and the same mesh. In the next

stage, time step and initial temperature are applied and equation BDM [(Backward Difference

Method) (16)] is solved. Each subsequent iteration has its own initial temperature from the

previous time step.

Figure 3: Schematic block diagram showing main idea of the FEM used in this work.

159

2.2 Shape functions.

Shape functions (SF) are polynomials and are used for interpolating continuous filed quantity

as well as to define shape of the parent element. In this work hexahedral 20-node elements

have been used, hence it follows the order of such functions together with their form. Such

functions belong to, so called, serendipity shape functions family [9]. Shape functions are

more precisely described in [7,9,10]. Figure 4 shows adopted manner of numbering of the

parent element's nodes.

Figure 4: Hexahedral element in global coordinate system with its node numbering manner.

Nodal numbers correspond to the proper shape functions. The choice of 20 – node element

(and those functions) is not accidental because of two important factors. Namely, shape

functions of the second order are sufficient enough to model temperature distribution

precisely, moreover use of serendipity elements allows to remove interior nodes of all

hexahedron's walls as well as one right in the middle. As a result significant reduction of

degrees of freedom occurs what leads to smaller computational effort – instead of 27 nodes

there are only 20 in a single element. In addition to that, such reduction has no serious impact

on accuracy [12].

2.3 Gaussian quadrature – integral approximation.

In numerical methods integrals are approximated instead of directly solved. There are many

methods to do such approximation, some of them are more efficient than others, for instance,

Gaussian quadrature. The idea is to pick such set of points (let say Gaussian Points - GP) that

after the insertion of them into approximating integral, an accurate solution is obtained.

Each GP has its own wage. The wages define shares of approximated domain. In 3

dimensions (3D) it is a volume, in 2 dimensions (2D) it is a share of surface whereas in 1D

case it is a section. In 3D case GP's coordinates has three components (x, y, z or ξ, η, μ),

hence volume around the GP consists of a combination of three wages γx, γy, γz.

Figure 5 shows 1D example of the Gaussian quadratures. Despite the fact that this work

concerns 3D domain, one dimensional case is far more readable. Each GP (dots) approximates

160

one piece of the bar. Each corresponding wage describes length of a section that is

approximated by a given GP.

Figure 5: Gaussian quadrature of the third order in 1D case.

For more specific information about Gaussian quadrature, please, refer to [8,9,13].

2.4 The Jacobian – a link between global and natural coordinate systems.

The Jacobian [J] is a measure of the distortion of the given parent element defined in local

coordinates in comparison to its counterpart in global coordinates [14]. Whereas determinant

of the Jacobian, det[J], is numerically equal to the length of a section of its counterpart in 1D,
surface in 2D case and equal to its volume in 3D case. The Jacobian is necessary to keep a

link between sub - domains and their global counterparts.

Figure 6 shows simple 2D case while the exemplary element (gray) is transformed into

quadrilateral parent element. Using the Jacobian allows to determine surface A of the given

element

Figure 6: Finite element (gray) in global coordinate system and its counterpart in local.

If the element had been, for example, rectangle with the same length in x direction as its

parent element, the two main (diagonal) Jacobian coefficients
𝜕𝑥

𝜕𝜉
,
𝜕𝑦

𝜕𝜂
would be non – zeros.

𝐴 𝑥, 𝑦 = det 𝑱 𝜕𝜉𝜗𝜂

(3)

161

[𝑱] =

𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑥

𝜕𝜇
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂

𝜕𝑦

𝜕𝜇

𝜕𝑧

𝜕𝜉

𝜕𝑧

𝜕𝜂

𝜕𝑧

𝜕𝜇

(4)

where 𝐉 is the Jacobian matrix and
𝜕𝑥

𝜕𝜉
,
𝜕𝑦

𝜕𝜉
,
𝜕𝑧

𝜕𝜉
,
𝜕𝑥

𝜕𝜂
,
𝜕𝑦

𝜕𝜂
,
𝜕𝑧

𝜕𝜂
,
𝜕𝑥

𝜕𝜇
,
𝜕𝑦

𝜕𝜇
,
𝜕𝑧

𝜕𝜇
 are the distortions in a

specific directions. Calculating such derivatives carries out in the following manner

 𝜕𝑥

𝜕𝜉
=

𝜕𝑁𝑖
𝑒

𝜕𝜉

𝑁𝑜𝐸𝑁

𝑖=1

𝑥𝑖

𝜕𝑥

𝜕𝜂
=

𝜕𝑁𝑖
𝑒

𝜕𝜂

𝑁𝑜𝐸𝑁

𝑖=1

𝑥𝑖

𝜕𝑥

𝜕𝜇
=

𝜕𝑁𝑖
𝑒

𝜕𝜇

𝑁𝑜𝐸𝑁

𝑖=1

𝑥𝑖

𝜕𝑦

𝜕𝜉
=

𝜕𝑁𝑖
𝑒

𝜕𝜉

𝑁𝑜𝐸𝑁

𝑖=1

𝑦𝑖

𝜕𝑦

𝜕𝜂
=

𝜕𝑁𝑖
𝑒

𝜕𝜂

𝑁𝑜𝐸𝑁

𝑖=1

𝑦𝑖

𝜕𝑦

𝜕𝜇
=

𝜕𝑁𝑖
𝑒

𝜕𝜇

𝑁𝑜𝐸𝑁

𝑖=1

𝑦𝑖

𝜕𝑧

𝜕𝜉
=

𝜕𝑁𝑖
𝑒

𝜕𝜉

𝑁𝑜𝐸𝑁

𝑖=1

𝑧𝑖
𝜕𝑧

𝜕𝜂
=

𝜕𝑁𝑖
𝑒

𝜕𝜂

𝑁𝑜𝐸𝑁

𝑖=1

𝑧𝑖
𝜕𝑧

𝜕𝜇
=

𝜕𝑁𝑖
𝑒

𝜕𝜇

𝑁𝑜𝐸𝑁

𝑖=1

𝑧𝑖

 (5)

where
𝜕𝑁𝑖

𝑒

𝜕𝜉
 is an 𝑒 − 𝑡ℎ element's shape function's derivative, 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are proper components

of global coordinate of 𝑖 − 𝑡ℎ nodal point.

In the method adopted in this project Gaussian integration was used to estimate triple integral

limiting parent element's domain. Determination of such matrix is quite simple and proceeds

as follows

𝜕𝑁1

𝑛

𝜕𝜉

𝜕𝑁1
𝑛

𝜕𝜂

𝜕𝑁1
𝑛

𝜕𝜇
⋮ ⋮ ⋮

𝜕𝑁20
𝑛

𝜕𝜉

𝜕𝑁20
𝑛

𝜕𝜂

𝜕𝑁20
𝑛

𝜕𝜇

𝑇

×
𝑥1

𝑒 𝑦1
𝑒 𝑧1

𝑒

⋮ ⋮ ⋮
𝑥20

𝑒 𝑦20
𝑒 𝑧20

𝑒
 =

𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑥

𝜕𝜇
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂

𝜕𝑦

𝜕𝜇
𝜕𝑧

𝜕𝜉

𝜕𝑧

𝜕𝜂

𝜕𝑧

𝜕𝜇

𝑛 ,𝑒

 (6)

where first matrix contains set of all nodes' derivatives calculated with 𝑛 − 𝑡ℎ Gaussian point,

middle one contains global coordinates of 𝑒 − 𝑡ℎ element and last one is the component

Jacobian matrix. In order to determine 𝐉 𝑒 a simple summation of all components[𝑱]𝑛 ,𝑒must
be carried out hence

 [𝑱]𝑒 = [𝑱]𝑛 ,𝑒

𝑁𝑜𝐺𝑃

𝑛=1

=

𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑥

𝜕𝜇
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂

𝜕𝑦

𝜕𝜇
𝜕𝑧

𝜕𝜉

𝜕𝑧

𝜕𝜂

𝜕𝑧

𝜕𝜇

𝑛 ,𝑒

𝑁𝑜𝐺𝑃

𝑛=1

 (7)

162

where 𝑁𝑜𝐺𝑃 is number of the Gaussian points (in this work 𝑁𝑜𝐺𝑃 = 27).

Determinant of the Jacobian matrix of the element 𝑒 and 𝑛 − 𝑡ℎ GP is calculated as follows

 det[𝑱]𝑒 = det[𝑱]𝑛 ,𝑒

𝑁𝑜𝐺𝑃

𝑛=1

 (8)

where det[𝑱]𝑛 ,𝑒 is computed with use of the Sarrus' rule [15].

2.5 Element's Stiffness Matrix [K]
e
.

Element's Stiffness Matrix [K]
e

(or conductance matrix) contains a set of coefficients

indicating mutual relationship between all nodes in the considering sub-domain. Such a

matrix is diagonal having a size of Number of the Element's Nodes x Number of the Element's

Nodes (NoEN x NoEN). In case of 20 – node hexahedron such a matrix is 20 x 20.

Determination of the matrix [K]
e
 is as follows

[𝑲]𝒆 = det 𝑱 𝑛 ,𝑒 (𝑘𝑥
𝜕𝑁

𝜕𝑥

𝑛 ,𝑒

𝜕𝑁

𝜕𝑥

𝑛 ,𝑒,𝑇

𝑁𝑜𝐺𝑃

𝑛=1

+ 𝑘𝑦
𝜕𝑁

𝜕𝑦

𝑛 ,𝑒

𝜕𝑁

𝜕𝑦

𝑛 ,𝑒,𝑇

+𝑘𝑧
𝜕𝑁

𝜕𝑧

𝑛 ,𝑒

𝜕𝑁

𝜕𝑧

𝑛 ,𝑒 ,𝑇

)

(9)

and

𝜕𝑁

𝜕𝑥

𝑛 ,𝑒

=

𝜕𝑁1

𝑛 ,𝑒

𝜕𝑥
⋮

𝜕𝑁20
𝑛 ,𝑒

𝜕𝑥

,
𝜕𝑁

𝜕𝑦

𝑛 ,𝑒

=

𝜕𝑁1

𝑛 ,𝑒

𝜕𝑦
⋮

𝜕𝑁20
𝑛 ,𝑒

𝜕𝑦

,
𝜕𝑁

𝜕𝑧

𝑛,𝑒

=

𝜕𝑁1

𝑛 ,𝑒

𝜕𝑧
⋮

𝜕𝑁20
𝑛 ,𝑒

𝜕𝑧

(10)

where
𝜕𝑁

𝜕𝑥
 ,

𝜕𝑁

𝜕𝑦
 ,

𝜕𝑁

𝜕𝑧
 are arrays of derivatives transformed to global coordinate system. In

order to gather more specific information about such transformation, please refer to chapter 4

p. 154-157 of [8], chapter 2 p. 42-44 of [7] and chapter 2 p. 58-61 of [11]. Moreover, [K]
e
 is

full.

2.6 Element's Mass Matrix [M]
e
.

Element's Mass Matrix [M]
e

(or capacitance matrix) contains approximated masses in nearest

surroundings of all nodes of the element after multiplication by density. Otherwise sum of all

values is equal to det[J]. In other words, each node is approximation of a part of the parent

element it belongs to. In 3D case, such node represents some volume of a solid which has

some density (mass) and specific heat. Such a matrix has the same dimensions as [K]
e
 and its

computation is as follows [11]

163

 [𝑴]𝒆 = det 𝑱 𝑛 ,𝑒 𝑵 𝑛 ,𝑒 𝑵 𝑛 ,𝑒,𝑇

𝑁𝑜𝐺𝑃

𝑛=1

 (11)

where

 𝑵 𝑛 ,𝑒 =
𝑁1

𝑒

⋮
𝑁20

𝑒

𝑛

 (12)

It should be stressed that multiplication by density and specific heat occurs after global mass

matrix assemblage. Moreover, similarly to [K]
e
, [M]

e
is full.

2.7 Assembly of a global stiffness [K] and mass [M] matrices.

Assemblage of such matrices consists of a rewriting of all local[K]
e

and [M]
e

into one global

matrix [K]
e

and [M]
e
 respectively. Size of the [K] and [M] depends on a total number of

nodes and is equal to 𝑇𝑁𝑜𝑁 × 𝑇𝑁𝑜𝑁. It would be convenient to discuss assemblage on the
example. Element's stiffness matrix

 𝐾𝑒 =

𝐾1,1 ⋯ 𝐾1,𝑁𝑜𝐸𝑁

⋮ 𝐾𝑖 ,𝑗 ⋮

𝐾𝑁𝑜𝐸𝑁 ,1 ⋯ 𝐾𝑁𝑜𝐸𝑁 ,𝑁𝑜𝐸𝑁

 (13)

Provides us with pattern of local nodal indexing, hence

 𝑖𝑖 = 1: 1: 𝑁𝑜𝐸𝑁 1: 1: 𝑁𝑜𝐸𝑁 ⋯ 1: 1: 𝑁𝑜𝐸𝑁

𝑗𝑗 = [1,1, … , 𝑁𝑜𝐸𝑁 2,2, … , 𝑁𝑜𝐸𝑁 ⋯ 𝑁𝑜𝐸𝑁, 𝑁𝑜𝐸𝑁, …𝑁𝑜𝐸𝑁]
 (14)

where𝑖𝑖 and 𝑗𝑗 are local i – indices and j- indices respectively. For the first element (e = 1)

global indices equals local ones, but for any other element do not. Because of matrix

dimensions 20x20, global indices increase by 400 for each subsequent element.

At this point it suffices to state that, method adopted in this work is fast and effective. It

should be noted that [K] and [M] are sparse, which means a lot of their elements are equal to

zero. MATLAB's function sparse() allows to store only non – zero elements in the matrix.

Such solution saves a lot of memory. Example of stiffness and mass matrices are shown in

Figure 7. To get more specific information about stiffness and mass matrices assembly, please

refer to [7] or [11].

164

Figure 7: Stiffness matrix [K] and Consistent Mass Matrix [M] (left hand side) and

Diagonally Lumped Mass Matrix (right hand side). Black dots denote non – zero values.

Generated with MATLAB's spy() function.

It is important to state that, those matrices (left hand side of the Figure 7) are highly

decomposed. In order to save computational effort one should strive for narrowing all off –

diagonal elements and concentrate them along main diagonal by optimization of nodal

numbering. Mass matrix with identical non – zero elements' distribution as well as the same

dimensions as [K] is known in the literature as Consistent Mass Matrix (CMM). Besides

CMM, in the literature known is also Diagonally Lumped Mass Matrix (DLMM) being

approximated version of CMM. Such a matrix has significantly reduced number of elements

what leads to faster computations but, due to additional approximation, lowers the accuracy.

Generally DLMMs are used in cases of very large geometries with millions of nodes when

computation time is more important than the accuracy [16].

Such approximation consists of a reduction of all off – diagonal elements to one lying in the

main diagonal, row – wisely. However, there are some requirements that have to be met. For

instance, in case of serendipity element, rows corresponding to their corner nodes result in

negative masses after summation of all elements which belong to them. In such a case,

conservation condition is not satisfied so use of different method of lumping may be

necessary. In the literature one can distinguish three main ways of mass matrix lumping:

 summation of all off – diagonal elements into one lying on the main diagonal,

 scaling diagonal elements by proper factor – in this method det[J] is divided by sum of
all diagonal elements and next is multiplied by each of them separately,

 Lobatto's method – is very similar to Gaussian quadrature.

Each of mentioned above methods, has its own pros and cons. In all of them lumping is

applied to local (element's) mass matrices which are assembled later. In order to get more

details, please refer to [16].

165

2.8 Neumann's Boundary Condition.

In the work at hand boundary condition of the second kind is used to model the laser flash. In

case of a 3D geometry, laser flash (Heat Flux) can be prescribed to the surface only (see

Figure 8).

Figure 8: Example of applying HF and new 2D nodal numbering (grey).

As a result appears a necessity of determination of the Jacobian 2D as well as use of proper

shape functions together with Gaussian Points. Determination of the [𝑱]𝟐𝑫 carries out in the

same way as the [𝑱] for 3D case. More information about 2D case can be found in [7], [8], [9]
and [11].

Such surface has 8 nodes and, in case of 3
rd

 order quadrature, 9 GPs. Heat flux coefficients

stored in RHS vector F are determined as follows

 𝑭𝑖
2𝐷 = 𝑁𝑖2𝐷(𝑛) det 𝐽 2D (𝑛)

9

𝑛=1

 (15)

where𝑖 = 1: 8 is nodal number, 𝑛 = 1: 9 is GP number and 𝑭𝟐𝑫 denotes temporary array with

the BC coefficients. Next, all of these coefficients are multiplied by desired heat flux.For

single element, there is 8 coefficients determined in this way that are (with use of the

connectivity matrix) inserted into proper rows of the RHS array F (according to their global

order).

2.9 Backward Difference Method.

BDM assumes that, nodal temperature in step s+1 depends on all other nodal temperatures

from step s. In this work BDM has been chosen because of three main reasons:

 as an implicit scheme, is always convergent,

 there is no 'inversion' of [M] ([6], [11]),

 is widely used by commercial software.

166

First point refers to the time step ∆t which has no impact on convergence of the solution [11].

The second one means that, in case of dense mesh, lumping of CMM will not be necessary to

keep reasonable calculation time because there is no mass matrix 'inversion' in Eq.(16).

Another advantage of this method is simplicity, because implementation of the BDM does not

require much effort in comparison to Central Difference Method (CDM) or to Forward

Difference Method (FDM) [11]. System of equations can be written as

 𝑻𝑠+1 =
(𝑴𝑻𝑠 + ∆𝑡𝑭)

 𝑴 + ∆𝑡𝑲
 (16)

where 𝑻𝑠+1 is vector of nodal temperatures in step s+1, 𝑻𝑠 is vector of nodal temperatures in

previous step s.

It is important to notice that in the denominator of Eq.(16) is [M] together with [K] which has

to be 'inversed' with no exception. [M] in the nominator, in this particular scheme, does not

have to be inversed. Eq.(16) is recomputed each time when time step Δ𝑡 changes and can be
rewritten

 𝑻𝑠+1 = 𝑴 + ∆𝑡𝑲 \(𝑴𝑻𝒔 + ∆𝑡𝑭) (17)

where \ is MATLAB's left division. Behind \ is hidden advanced equation solver using a wide
range of numerical methods [17], but has one essential drawback. Namely, solving many

systems of equations like 𝑨𝒙 = 𝒃 and 𝑨𝒚 = 𝒄 requires factorization each time, when \
command is executed. There is no possibility of storing factorized matrix in order to reuse it

in another system of equations. Matrix A inversion could be carried out once and then reused

but such solution should be excluded at the very beginning because of three main reasons:

 inversion process is highly inaccurate – a lot of elementary operations are burdened

with numerical errors,

 such process requires a lot of time,

 in case of sparse matrices (huge systems of equations), so called, fill – in phenomenon
occurs, what leads directly to full matrix instead of sparse and to a lot of memory

requested in order to store such matrix.

There are two ways of solving huge systems of equations of type 𝑨𝒙 = 𝒃 and 𝑨𝒚 = 𝒄:

 direct methods - fast and accurate but requiring a lot of memory,
o factorization (Cholesky, LU, LDL

T
, QR [20], Gaussian Elimination),

 iterative methods - not so fast and not so accurate but saving a lot of memory.
o Preconditioned Conjugate Gradient (PCG),

o Jacobi Conjugate Gradient (JCG),

o Cholesky Conjugate Gradient (CCG) [18].

Geometry and mesh, in this work and in the project [2] as well, are rather small and simple so

use of factorization is possible. Because of the decomposition of matrices [K] and [M]

Gaussian Elimination is inefficient, but works goods for diagonal matrices with narrowly

167

distributed off – diagonal entries. Besides that, PCG has been tested also (because of the best

performance described in [18]) and it turned out it is comparable to factorization in MATLAB

2011a in contrast to 2009b.

Through Mathworks' File Exchange [5],Timothy A. Davis of the University of Florida has

released his own factorization algorithm [19] in 2009 that has been permanently implemented

to MATLAB 2014b as toolbox. This algorithm has been used, in this work, to solve Eq.(17).

2.10 Errors.

All errors presented in this work are calculated as follows

 𝐸𝑟𝑟𝑖 =

 𝑇𝑖,𝐷𝐿𝑀𝑀

2 − 𝑇𝑖,𝐶𝑀𝑀
2

 𝑇𝑖,𝐶𝑀𝑀
2

∙ 100%

2

 (18)

where 𝑇 is nodal temperature, 𝑖 denotes node number, 𝐷𝐿𝑀𝑀 and 𝐶𝑀𝑀 are Diagonally

Lumped Mass Matrix and Consistent Mass Matrix respectively.

In the case of mixed BC described in Chapter 3.1.2 (steady – state), nodal temperatures

denoted with use of DLMM and CMM subscripts in the Eq.(18) are replaced by nodal

temperatures obtained with 2
nd

 and 3
rd

 order quadratures respectively using Eq.(19).

3 Numerical study – benchmark.

Before the program has been written, two benchmarks had been solved. First one in 2D,

second one in 3D to make sure the FEM works properly. It was very important to implement

new features step by step because of the complexity of the Finite Element Method so finding

potential mistake could be extremely difficult. At first, learn about integration between local

and global systems of coordinates was necessary (Gaussian quadrature, Jacobian). After that

proper assemblage of global stiffness matrix had to be done.

3.1 2D benchmark.

Pattern example has been generated with PATRAN and consisted of two cases of steady –

state heat transfer:

 pure Dirichlet's Boundary Condition (DBC),

 mix of Dirichlet's and Neumann's BCs.

This benchmark was carried out in order to learn how to apply BCs properly. Applying of

these BCs is discussed in chapters 3.1.1 and 3.1.2 using the specific examples for the

educational purposes. Also implementation of the BCs is described more specifically when

discussing the two following examples, mainly due to greater readability.

The geometry from PATRAN (Figure 9) was a simple plate composed of 27 elements and 106

nodes of length 0.5 m and width 0.2 m. All elements were 8 – nodal hexahedrons and were

equal to each other. Nodal coordinates as well as connectivity matrix were exported from

168

PATRAN to a text file. It was, and it meant to be, a simple test and its purpose was to validate

the developed program.

Figure 9: The geometry generated with PATRAN.

PATRAN's nodal numbering were adopted so all nodes correspond to each other. Another

thing worth of mention is that, to approximate double integral Gaussian quadrature of the

second order was used. As shown later research, third order quadrature met the requirements

concerning the accuracy. To solve steady – state problem, the following equation is used

 𝑻 = 𝑲\𝑭 (19)

Results in the following subsections have been obtained for thermal conductivity 𝑘 = 25
𝑊

𝑚 °𝐶
.

3.1.1 Dirichet's Boundary Condition.

Boundary condition of the first kind, also known as Dirichlet's BC, has been applied in the

way described in [8] on pages 103 – 104 with use of, so called, penalty method.

To the left hand side of the elements 1, 10 and 19 (see Figure 9) 50˚C has been prescribed, to

the right hand side of the elements 9, 18 and 27, 150˚C. Figure 10 proves temperature

distribution in both cases is the same and isotherms are arranged into symmetrical, vertical

strips of equal width. Gaussian order of the second order was used.

Figure 10: Temperature distribution from:

MATLAB (left hand side), PATRAN (right hand side).

169

It should be stressed, that presenting the results provided by different programs, in a similar

manner, is problematic. For instance, in MATLAB it is easy to generate such figure (Figure

10) in grayscale in contrast to PATRAN, where it is much more complicated. During the

analysis has been discovered that, in this particular case of pure DBC, results do not depend

on values of coefficients in a stiffness matrix as well as on Gaussian quadrature's order. But

they do depend on sign – negative or positive and to be exact, on distribution of negative and

positive coefficients in [K]. Nevertheless, investigation of the nodal temperatures (chosen

ones has been gathered in Table 1) has confirmed the fact that, the results are correct.

Table 1: Comparison of chosen nodal temperatures (second order quadrature).

Self-made code in MatLAB Patran

Node: Nodal temperature, ˚C:

106 149.9999 150.0000

95 88.8889 88.8888

80 72.2222 72.2221

56 127.7777 127.7780

14 122.2221 122.2220

1 50.0000 50.0000

As one can notice, the results are nearly the same with some negligible differences after third

decimal place. Obviously, the code, in this particular case, works properly.

3.1.2 Mixed Dirichlet's and Neumann's Boundary Condition.

Next thing that had to be done, was implementation of the BC of the second kind (imitating

the heat flux), crucial to the next stages of this work. In this case DBC remained unchanged

and NBC has been added. Normal heat flux (𝑞𝑠 = 40000
𝑊

𝑚2) has been prescribed to northern

edge of the 24 – th element (see Figure 9).

From the point of view of the heat flux (normal to the boundary), the edge to which it is

assigned is a single line described by nodes 98, 99 and 100. Single line means one

dimensional case. For that reason an approximation of the edge in local coordinates system
has been done. That requires different shape functions, new Jacobian and new set of the

Gaussian points. Further implementation of the NBC (RHS coefficients) is carrying out

according to Eq.(15).

Temperature fields obtained from MATLAB and PATRAN are presented in Figure 11. On the

left hand side of the plate DBC (50 °C) is prescribed that keeps applied there temperature

(cools the plate), second DBC (on the right side) holds there 150 °C. Applied heat flux to the
northern edge of the 24 – th element is sufficient to locally heat the plate to temperature over

200 °C. The isotherms are unsymmetrical due to two different (but symmetrically oriented)
DBCs.

170

Figure 11: Temperature distribution obtained from: MATLAB (left hand side) and PATRAN

(right hand side). Mixed BC.

Table 2 shows chosen nodal temperatures of the considering case obtained with 2
nd

 and 3
rd

Gaussian quadrature's order. Nodes to which the NBC is applied are set in bold.

Table 2. Chosen nodal temperatures obtained with MATLAB and PATRAN.

Self – made code in MATLAB PATRAN

Quadrature's

order
2 3 3

Node: Nodal temperature, ˚C:

106 149.9999 150.0000 150.0000

100 200.8242 200.7404 200.7380

99 212.5521 211.8979 211.8959

98 192.5137 192.4287 192.4279

95 127.5782 127.6529 127.6530

80 92.6374 92.6137 92.6132

56 156.7796 156.7883 156.7879

14 150.0737 150.0577 150.0570

1 50.0000 50.0001 50.0000

It is easy to notice that, second order quadrature is not accurate enough in case of mixed BC

or pure NBC, but in case of pure DBC is sufficient. Moreover, the closer to the nodes that

NBC is prescribed to (98, 99, 100), the higher differences between the nodal temperatures are.

All errors were calculated with use of Eq.(18) and take the maximum values directly at NBC

– nodes and are negligible after exceeding a certain distance (from the NBC), see Figure 12.

It is clear that error's distribution concentrates in region of NBC and spreads in all available

directions. Despite the fact that, applied DBCs are at varying distances from the NBC, error

distribution is almost perfectly symmetrical. At the nodes where DBC is prescribed, those

differences are negligible (see Table 2, nodes 1 and 106).

171

Figure 12: Graphical interpretation of the errors' distribution due to applying the NBC with

use of the 2
nd

 order Gaussian quadrature in comparison to the 3
rd

 order quadrature.

Obviously, 2
nd

 order quadrature does not provide satisfying accuracy in contrast to the 3
rd

order quadrature that simultaneously involves slightly higher computational effort (instead of

4 GP points there are 9 for 2D case). Because of the accuracy, 3
rd

 order quadrature has been

permanently implemented in the program.

3.2 3D benchmark.

At this phase, extending 2D FEM to 3D was necessary. Main difficulty was finding proper

formulas. In the literature 2D cases are described in detail, but in most cases when it was

coming to 3D, authors just limited themselves to a perfunctory statement, that all formulas are

similar to 2D. As it turned out later, they were right. Nevertheless, stiffness matrix assemblage

provided a lot of difficulties. At this phase, again, development of the code proceeded step by

step in order to evade mistakes that could be hard to find.

Analysis setup and material properties:

 Thermal conductivity 𝑘 = 25
𝑊

𝑚 °𝐶
.

 Density 𝜌 = 1091
𝑘𝑔

𝑚3.

 Specific heat 𝑐 = 900
𝐽

𝑘𝑔 °𝐶
.

 Time step Δ𝑡 = 20 𝑠.

 Time of analysis (total time)𝑡𝑡 = 2500 𝑠.

 Heat flux 𝑞𝑠 = 40000
𝑊

𝑚2.

Applying the BCs has been carried out in the same way as for 2D benchmark in the

MATLAB. The geometry has been created in PATRAN together with the BCs and imported

to the MATLAB. A cuboid, presented in Figure 13, consists of 60 hexahedral elements and

406 nodes.

172

Figure 13: 3D geometry prepared with PATRAN and prescribed all boundary conditions.

Heat flux were applied later, in the next analyzes.

3.2.1 Dirichlet's Boundary Condition, steady – state.

In this case DBC was ascribed at three regions:

 lower X – Y plane: 50˚C (first),

 upper X – Y plane: 150˚C (second),

 one element in X – Z plane: 250˚C (third).

Three different DBCs are prescribed in order to eliminate special case described in chapter

3.1.1concerning pure DBC in 2D, where values of coefficients in stiffness matrix did not have

any impact on the solution. Third DBC prevents such situation. Figure 14 shows temperature

distributions obtained from PATRAN and MATLAB. Unfortunately, rotating a 3D figure in

MATLAB is limited so setting similar view to PATRAN's figure is not possible. Third DBC

(250˚C) makes isotherms irregular and much more concentrated on the wall it is prescribed to,

especially between the first DBC and the third.

173

Figure 14: Temperature distribution obtained from: MATLAB (left hand side), PATRAN

(right hand side). Steady – state, triple DBC.

Table 3 presents chosen nodal results from MATLAB and PATRAN. As one can see, 3
rd

order quadrature applied to MATLAB's code is sufficient and allows for getting accurate

temperatures in comparison to PATRAN.

Table 3: Results from MATLAB (3rd order quadrature) and PATRAN.

Self-made code in MATLAB PATRAN

Node: Nodal temperature, ˚C:

1 49.9999 50.0000

50 50.0000 50.0000

100 92.9081 92.9082

150 166.0193 166.0200

200 168.7079 168.7079

250 138.8943 138.8939

264 135.7371 135.7370

300 159.2606 159.2610

350 149.0673 149.0670

400 150.0000 150.0000

406 150.0000 150.0000

This benchmark proved that, the stiffness matrix [K]in 3D case has been assembled correctly.

Otherwise, corresponding nodal temperatures would not be consistent. The differences

between them are negligible.

174

3.2.2 Mixed Boundary Condition, steady - state.

In this case, the correctness of applying mixed BC has been verified. To triple DBC described

in chapter 3.2.1, NBC has been added for the following elements: 34, 35, 46, 47 (presented on

Figure 13). Figure 15 presents graphical interpretation of the obtained temperature fields

provided by MATLAB and PATRAN. Applied heat flux, is sufficient for increasing the

maximum temperature to higher value than third (the highest) DBC.

a) b)

c) d)

Figure 15: Temperature distribution with triple DBC and single NBC (mixed BC). a) NBC

side, MATLAB, b) NBC side, PATRAN, c) 3
rd

 DBC side, MATLAB, d) 3
rd

 DBC side,

PATRAN.

175

In Figure 15 c) and d), one can notice rectangular shape slightly brighter than its nearest

surroundings – it is third DBC (250 °C) applied to the four chosen elements' surfaces. To the

lower base (lower X – Y plane) first DBC is prescribed, what is confirmed by dark shade of

gray. Similarly upper base (upper X – Y plane) to which second DBC is prescribed and which

shade corresponds to 150 °C. Big bright stains in Figure 15 a) and b) present applied heat flux
and are located near the same edge. Except for the number of isotherms, figures from the

MATLAB look similarly to those from the PATRAN. Chosen nodal temperatures are

presented in Table 4 and are nearly the same.

Table 4: Results from MATLAB (3rd order quadrature) and PATRAN. Mixed BC.

Self-made code in MATLAB PATRAN

Node: Nodal temperature, ˚C:

1 49.9999 50.0000

50 50.0000 50.0000

100 125.7416 125.7409

150 192.7073 192.7070

200 206.0997 206.0989

250 266.3079 266.3060

264 269.3892 269.3880

300 187.2779 187.2780

350 188.7256 188.7250

400 149.9999 150.0000

406 149.9999 150.0000

This benchmark proved that 3
rd

 order quadrature is sufficient to obtain results that are

comparable to PATRAN's. In addition to that, stiffness matrix assembly (3D) has been carried

out properly as well as applying of the NBC (2D – surface).

3.2.3 Mixed Boundary Condition, transient, CMM and DLMM.

The next step was an implementation of the BDM – transient heat transfer equation (Eq.(16))

in place of steady – state equation (Eq.(19)). Second and third DBCs (150˚C and 250˚C) have

been removed. First DBC (50˚C) remained and simultaneously this temperature was an initial

value also. NBC remained unchanged as well as density, TC and all others. The following

figure (Figure 16) is a set of two figures from MATLAB and two from PATRAN. It presents

temperature distribution at 20 and 2500 second of heating a cuboid with heat flux. The

temperature increases gradually around the area to which NBC is applied. Because of the first

DBC that holds 50˚C on the basis of the presented cuboid, upper part of the solid heats up to a

much greater extent. Back side, however, still remains 'cold' but it is only a matter of time

before the temperature become more uniform. It is noteworthy that steady – state has not been

achieved.

176

a) b)

c) d)

Figure 16:Temperature distribution from MATLAB (left hand side) and PATRAN (right

hand side): a) and b) after 20 s; c) and d) after 2500 s.

As one can see, PATRAN's shade interpolation looks smoother. Nevertheless, the temperature

distribution in both cases is similar. In

Table 5 are presented results from MATLAB and PATRAN. Setup of the analysis was the

same in both cases. Node to which the NBC is applied is set in bold. Calculations have been

carried out with CMM and with use of factorization algorithm written by Timothy Davis [20].

177

Table 5: Results from MATLAB and PATRAN. Single DBC and NBC. CMM.

MATLAB PATRAN

Time, s: 20 1500 2500 20 1500 2500

Node: Temperature, ˚C: Temperature, ˚C:

1 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000

50 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000

100 50.1069 61.9589 72.1512 50.1068 61.9588 72.1509

150 49.9937 57.41512 71.0562 49.9937 57.4151 71.0560

200 49.9918 63.5700 80.9149 49.9918 63.5698 80.9146

250 51.9898 133.0161 161.7480 51.9896 133.0149 161.7469

264 82.2932 288.2891 319.2235 82.2923 288.2869 319.2210

300 50.0164 63.5048 84.1807 50.0164 63.5046 84.1801

350 51.0058 103.2670 134.5854 51.0057 103.2669 134.5850

400 49.3207 95.0306 128.3418 49.3207 95.0303 128.3410

406 48.6141 109.3724 143.0194 48.6141 109.3720 143.0180

Nodal temperatures in both cases are nearly the same. Because of the negligible impact of the

mass matrix lumping on a calculation time it has not been taken into account at this stage.

However, in this particular case lumping has serious impact on results. Table 6 shows nodal

temperatures after mass matrix lumping involved.

Table 6: Results from MATLAB and PATRAN. Single DBC and NBC. DLMM.

MATLAB PATRAN

Time, s: 20 1500 2500 20 1500 2500

Node: Temperature, ˚C: Temperature, ˚C:

1 50.0000 50.0000 49.9999 50.0000 50.0000 50.0000

50 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000

100 50.0047 61.1171 71.2368 50.0047 61.1170 71.2367

150 50.0000 57.6899 70.8089 50.0000 57.6898 70.8087

200 50.0033 64.0506 81.0321 50.0033 64.0503 81.0317

250 50.0082 130.0064 159.7537 50.0082 130.0050 159.7519

264 51.3226 282.8759 316.1018 51.3230 282.8739 316.0989

300 50.0141 62.9922 82.888695 50.0141 62.9921 82.8883

350 50.2543 102.7736 134.0306 50.2542 102.7730 134.0299

400 49.8913 91.7538 125.2727 49.8913 91.7536 125.2720

406 50.8818 105.5617 139.8922 50.8816 105.5609 139.8910

It should be noticed that lumping introduces some errors. In case of early iterations such error

reaches even 37 % (Table 7) and decreases over time. The temperature at node 264 in the first

178

iteration (20 s) with CMM equals to about 82.3˚C while the temperature at the same node and

iteration, but with DLMM, is equal to about 51.3˚C. This gives the difference of 30˚C (37 %).

Research project (described in chapter 1.1) requires as much accuracy as possible and,

unfortunately, lumping noticeably decreases program's reliability simultaneously without

providing any benefits (for instance, shorter calculation time).

Table 7: Errors generated by mass matrix lumping.

Node:
MATLAB PATRAN

Error, %: Error, %:

1 0 0 3.8E-07 0 0 0

50 0 0 0 0 0 0

100 0.20 1.36 1.27 0.20 1.36 1.27

150 0.01 0.48 0.35 0.01 0.48 0.35

200 0.02 0.76 0.14 0.02 0.76 0.14

250 3.81 2.26 1.23 3.81 2.26 1.23

264 37.63 1.88 0.98 37.63 1.88 0.98

300 0.00 0.81 1.53 0.00 0.81 1.53

350 1.47 0.48 0.41 1.47 0.48 0.41

400 1.16 3.45 2.39 1.16 3.45 2.39

406 4.66 3.48 2.19 4.66 3.48 2.19

3.3 Target geometry.

Previously carried out tests have shown that, the program works properly so from this

moment it was treated as a 'black box'. This approach is dictated by large number of nodes

(and data in general) what indicates much more difficult debugging. An additional function

had been implemented for adjusting the diameter of the laser's spot which, during the

measurements, may be changed. Function for proper locating of the heat flux had been added

also. At this phase, real sample's geometry (that will be used in the future in the project) and

real heat flux (heat flux that actually can be applied during the measurements) have been

modeled in Ansys Workbench and were used as final benchmark which includes:

 mass matrix lumping impact on the solution,

 comparison of the Ansys' and the developed code's calculation times and memory

usage,

 comparison of different factorization methods,

 comparison of factorizations and PCG,

Additional example including quarter of a cube has been investigated also.

All of the following analyzes were carried out with use of the same hardware and software:

Intel® Core™ i7-3770 CPU @ 3.40GHz 3.4GHz with 8Gb RAM on 64-bit operating system

Windows 7 SP1, Ansys 16.2 (student license), MATLAB 7.9 2009b (academic license).

179

The geometry includes whole sample showed at Figure 17thatcube with dimensions 0.05 x

0.05 x 0.05 m. The mesh is obtained with Sweep method. Number of elements: 7085. Number

of nodes: 31150.

Figure 17: Whole sample. Emission face is marked with the circle.

It should be stressed that, the elements of the mesh presented above has low quality and the

mesh is insufficiently fine so the results are not accurate. However, main purpose of this

analysis was to check if the developed program gives the accurate results in comparison with

Ansys.

Benchmark sample's material is overwritten structural steel in Ansys Workbench with the

following properties:

 Density – 1091
𝑘𝑔

𝑚3 .

 Orthotropic TC:

o X: 5.5 𝑊 𝑚 °𝐶 .

o Y: 5.5 𝑊 𝑚 °𝐶 .

o Z: 5.5 𝑊 𝑚 °𝐶 .

 Specific Heat – 900
𝐽
𝑘𝑔 °𝐶 .

All calculations were carried out with the same setup which consists of:

 Laser's beam radius: 0.0005 m.

 Laser's heat flux: 8.5158e+007 𝑊 𝑚 .

 Initial temperature: 18˚C.

 Laser emission time: 0.19 s.

180

However, two cases were analyzed with different number of iterations and time steps:

 Short – 362 iterations.

 Long – 436 iterations.

More information about considered analysis' variants can be found in Table 8. In case of long

analysis, IR camera recording time steps are in random order, so factorization had to be

performed almost every two iterations – this means increased computational effort.

Table 8: Specification of the performed analyzes.

Analysis' variants.

 Short: Long:

 Steps: Time step, s: Time, s: Steps: Time step, s: Time, s:

 190 0.001 0.19 190 0.001 0.19 Laser's emission.

1 0.0012 0.1912 1 0.0009 0.1909
Indirect time step.

 - - - 1 0.0011 0.192

166 0.0018 0.49 125 0.0018 0.417

R
ec

o
rd

in
g

 t
h
e

te
m

p
er

at
u

re

fi
el

d
 (

ra
n

d
o
m

 t
im

e
st

ep
s)

.

1 0.0018 0.4918 1 0.007 0.424

1 0.0019 0.4937 1 0.008 0.432

1 0.002 0.4957 1 0.015 0.447

1 0.0021 0.4978 42 0.016 1.119

1 0.0022 0.5 68 0.017 2.275

 - - - 3 0.018 2.329

 - - - 1 0.019 2.348

 - - - 2 0.026 2.4

3.3.1 Results – full cube.

Figures below (Figure 18, Figure 19and Figure 20) present results of most accurate methods.

For MATLAB it is factorization with CMM and for the Ansys it is direct solver with CMM as

well. Only heated surface is presented. Additionally, Figure 18, Figure 19 and Figure 20 have

different scales. If they had not been different, due to high temperature difference (over

5400°C) Figure 18 and Figure 20 would not have been readable (there would not have been
anything to see).

Figure 18 shows numerically obtained temperature distributions in first time step (after 0.001

s) in MATLAB and in Ansys respectively. This figure provides important information: in

MATLAB, location of the applied heat flux is the same as in Ansys (what means previously

added function works well), diameters of the obtained bright dots are not noticeably different

from each other.

181

Figure 18: Temperature distribution at 0.001 s.

MATLAB (left hand side): Max: 317.878˚C. Min: -34.432˚C.

Ansys (right hand side)Max: 318.64˚C. Min: -36.861˚C.

Negative temperatures occurred due to way of applying NBC. In case of serendipity 8 – node

quadrilateral elements (surface of hexahedron to which NBC is prescribed), coefficients

corresponding to corner nodes are negative. When NBC is applied to several adjacent

elements (so they have common nodes) the negative coefficient in RHS (in case of common

corner node) is sum of negative coefficients from all elements that this particular node

belongs to. In addition to that, those coefficients in RHS depend on heat flux (in this analysis

it is 8.5158e+007 𝑊 𝑚) and on det[J]
2D

. So huge heat flux in comparison to the surface (it is
66.83 W) and very short time step results in negative temperatures at the corner nodes of

specified surfaces of the boundary elements.

Figure 19 and shows numerically obtained temperature distributions in last iteration when

NBC is applied (0,19 s) – end of laser's emission (maximum temperature during the whole

process).

Figure 19: Temperature distribution at 0.19 s.

MATLAB (left hand side): Max: 5477.259˚C. Min: -8.904˚C.

Ansys (right hand side) Max: 5479.3˚C. Min: -8.825˚C.

182

Considering now again the temperatures, one should notice that the maximum temperatures

are extremely high. Main reason for this situation is that only NBC was applied, with no heat

losses due to radiation and convection. Another thing worth mentioning is the negative

temperatures. Obviously 0.19 s is too short time interval to model heat flux properly

(physically).

Figure 20 shows numerically obtained temperature distributions in last iteration of the short

analysis' variant.

Figure 20: Temperature distribution at 0.5 s.

MATLAB (left hand side): Max: 191.329˚C. Min: 17.999˚C.

Ansys (right hand side): Max: 191.62˚C. Min: 17.999˚C.

In this case all temperatures are positive, moreover minimum temperatures are equal to the

initial temperature. Differences between corresponding to each other nodal temperatures are

negligible also. This leads to the conclusion that, the results become more reliable after

switching off the laser's source (NBC). Obviously use of the results from the final iterations

(some time after the end of the laser's emission) for determining the TC will provide

maximum accuracy. Moreover, spot's diameter noticeably increased, mainly due to time (the

heat has time to spread) and smaller temperature difference (18 – 191˚C) which affects the

color scale (displaying the results).

3.3.2 Solvers' performances – full cube.

Simulations in MATLAB have been carried out with use of two methods:

 Direct method with use of factorizations (LU, LDL
T
, Cholesky, QR).

 Iterative method with use of PCG provided by MATLAB [21] with no preconditioner.

Somehow, at least in MATLAB 2009b, preparation of the preconditioner takes much longer

than the analysis with use of PCG without preconditioners, so it has been used without them.

Another disadvantage of MATLAB's PCG is its syntax, namely, while no preconditioner is

used, change of the initial guess becomes impossible due to the lack of input arguments

required by the function to work. When initial guess is not defined, PCG starts each iteration

183

from 0 what leads directly to lose of the efficiency. In other words, to define the initial guess

all other input arguments of the function are necessary.

In further analyzes Ansys' direct method with Consistent Mass Matrix has been assumed as

the one providing an exact solution. All other methods were referenced to it. Moreover, in the

following part several abbreviations appear with common pattern Software_method_mass

matrix:

 A_d_cmm (Ansys_direct_Consistent Mass Matrix),

 A_d_dlmm (Ansys_direct_Diagonally Lumped Mass Matrix),

 A_it_cmm (Ansys_iterative_CMM),

 A_it_dlmm (Ansys_iterative_DLMM),

 ML_chol_cmm (MATLAB_Cholesky_CMM),

 ML_chol_dlmm (MATLAB_Cholesky_DLMM),

 ML_ldl_cmm (MATLAB_LdL
T
_CMM),

 ML_ldl_dlmm,

 ML_lu_cmm (MATLAB_LU_CMM),

 ML_lu_dlmm,

 ML_qr_cmm (MATLAB_QR_CMM),

 ML_pcg_cmm.

Figure 21 presents accuracy of Ansys' direct and iterative solvers with and without mass

matrix lumping. All errors were calculated with Eq.(18). Differences have been computed for

all nodes corresponding to each other and then mean value was taken into account. As the

A_d_cmm has been chosen as a reference solution, it lies directly on the abscissa.

Figure 21: Average differences in chosen time steps. Only Ansys' solvers included.

As one can notice, all of the Ansys' solvers are very accurate because of insignificant results'

differences. Nevertheless, those differences increase over time until NBC is switched off and

then their stabilizes themselves.

184

Figure 22 presents accuracy of solvers used in MATLAB. Average differences are calculated

in the same manner as in case of Ansys' solvers described above.

Figure 22: Average differences in chosen time steps. MATLAB.

It is important to notice that, all factorizations with use of CMM have the same accuracy.

Similarly factorizations with use of DLMM. Differences between them are much higher than

in case of Ansys' solvers. Moreover, mass matrix lumping has significant impact on the results

contrary to the lumping in Ansys. It also should be noted that in both cases differences grow

with time due to the growth of the nodal temperatures. Obviously, NBC applied in MATLAB

is burdened with inaccuracy.

Table 9 contains the measured analyzes times and required memory of all tested methods of

solving systems of linear equations. In case of ML_qr_cmm and ML_pcg_cmm long analysis

variant has not been carried out due to very long analysis time of the short variant. Required

memory as well as analyzes times for Ansys' solvers have been found in solver output files

(located at the bottom of folder with project's files). In case of MATLAB, required memory

has been computed as a sum of memory used by all variables existing in the workspace right

after factorization or first iteration (in case of PCG).

Table 9: Analysis time and required memory by tested methods.

Method:

Short: Long:

Analysis time,

s:

Requiredmemory,

Mb:

Analysis time,

s:

Requiredmemory,

Mb:

A_d_cmm 649.0 174.0 759.3 174.0

A_d_dlmm 628.8 174.0 746.9 174.0

A_it_cmm 629.4 174.0 743.4 174.0

A_it_dlmm 624.4 174.0 753.5 174.0

ML_chol_cmm 537.7 541.2 882.2 541.2

ML_chol_dlmm 530.3 515.7 884.0 515.7

185

ML_ldl_cmm 594.7 547.6 1000.4 547.6

ML_ldl_dlmm 592.0 522.1 1000.1 522.1

ML_lu_cmm 410.6 992.1 983.8 992.1

ML_lu_dlmm 401.8 966.7 991.3 966.7

ML_qr_cmm 2512.8 1325.5 - -

ML_pcg_cmm 1246.9 55.0 - -

Figure 23 presents analyzes times obtained with all tested methods. QR factorization and

MATLAB's PCG (with no preconditioner) have significantly worse performances so they

have been omitted in the short analysis with DLMM and in the whole long variant. Presented

times contain all computational processes from the very beginning to the end of the analyzes.

In Ansys it is from the start of the solution to its end and in MATLAB from import data from

Ansys' solver output file .dat through preparing all necessary matrices (building system of

equations) to the end of calculations. It is important to keep in mind that, the MATLAB used

to the analyzes has no parallel computing toolbox, so only one core has been used. For this

reason all times concerning analyzes carried out in Ansys are the total CPU time summed for

all threads (it can be also found in solver output file).

Figure 23: Analyzes times of all tested methods – short variant.

It is important to notice that, mass matrix lumping has no significant effect on the analyzes'

times. It confirms the fact known from the literature [16], that in case of implicit scheme (no

mass matrix 'inversion') lumping has no major sense. What is more, the program with use of

LU, LdL
T
 and Cholesky factorizations is slightly faster than Ansys (short variant).

Figure 24 presents times of analyzes used in long variant of analysis. Five methods were

tested in total.

186

Figure 24: Analysis time of all tested methods – long variant.

In contrast to the short variant (Figure 23), Ansys in this case has better performance than the

code written in MATLAB. Furthermore, once again times of the analyzes hardly depend on

the mass matrix lumping which, in turn, seriously affects the results in case of the MATLAB.

Additionally, LU factorization was the fastest method (in MATLAB) in short variant but in

this case the Cholesky turned out to be faster. Explanation to this is as follows – solver written

in MATLAB saves factorized matrices of different time steps to the hard drive as .mat files in

temporary directory. Time consumed by saving as well as loading these matrices highly

depends on their size. LU factorization is almost twice the size of the Cholesky factorization

so saving and loading takes more time. Such an approach has sense in case of small meshes

(like in this analysis) when saving and loading factorized matrices takes less time than

carrying out whole new factorization and when time steps are not very diverse (infrequent

saving, frequent loading of necessary factorized matrices). For instance, Cholesky

factorization takes about 10 s, saving takes about 15 s but loading only about 2 s (these times

are estimated, because each loading or saving takes different time due to temporary CPU

usage by other processes).

Figure 25 presents memory used by variables. Ansys' solvers alone are far more economical

than those written in MATLAB except for PCG but, as it was mentioned before, in MATLAB

2009b it had poor performance in comparison to the factorizations.

187

Figure 25: Memory used by tested methods.

Figure 25 does not show this clearly, but mass matrix lumping allows to save about 25 Mb of

memory in case of considered small mesh (see Table 9). It is negligible advantage. To state if

Ansys actually is more economical than the program written in MATLAB, one should take

into account one additional factor, namely, memory requested by the software itself. In Table

10is summarized minimum amount of memory needed to carry out the necessary calculations.

Table 10: Memory required to run the analysis.

Ansys: Memory, Mb:

Workbench: 280*

Mechanical: 240*

Solver: 2112

Total: 2632

MATLAB: 500

Variables: 600**

Total: 1100

* estimated value.

** estimated value on the assumption of the Cholesky or LDL
T
 factorization in case of similar

number of elements as in already considered mesh.

To run the thermal analysis with use of the Ansys, one has to open Workbench, Mechanical

and additionally start the solver. Unfortunately, during starting the solver Ansys allocates

2112 Mb of RAM although in cases described earlier, uses only 174 Mb. MATLAB, in turn,

requires more memory during computations but, after all, smaller amount of available

memory will met the requirements. What is more, if MATLAB is started as a command line

alone, required memory reduces from about 500 Mb to a little over 100 Mb. Such approach

allows to perform even complex numerical analyzes with use of old hardware when the

available memory is limited.

188

In order to check impact of saving factorized matrices to the hard drive on the solver's

performance, two most promising methods (LU and Cholseky) have been chosen and tested

once again. In this analysis, solver written in MATLAB does not save any matrices to the hard

drive. In Table 11are gathered analyzes times and memory usage of the considered methods.

Table 11: Analyzes times and memory usage of LU and Cholesky factorizations in case of

modified solver.

Method:
Long:

Analysis time, s: Required memory, Mb:

A_d_cmm 759.3 174.0

ML_lu_cmm 1044.1 992.1

ML_chol_cmm 749.4 541.2

Figure 26 presents graphical comparison of the analyzes times of Ansys and two chosen

factorizations in MATLAB. Long analysis.

Figure 26: Solver performance with saving factorizations to the hard drive and without in

comparison to Ansys' direct solver.

In case of LU factorization, solver which saves factorized matrices to the hard drive is slightly

faster than one without saving. However, in case of Cholesky factorization the situation is

contrary. As it was mentioned before, memory usage of LU is almost twice as the Cholesky,

so saving and loading prepared matrices improves efficiency of the solver (instead of doing

whole new factorization), but it is still much slower than Ansys. On the other hand Cholesky

factorization based solver improved its efficiency after switching off saving and loading

factorized matrices. Furthermore, its efficiency is slightly better than Ansys' direct solver.

Memory usage of these methods remained unchanged. From the viewpoint of the project, the

analysis time and accuracy of the described program are crucial. However, one cannot forget

about memory usage. In case of more complex meshes with increasing number of elements,

memory requirements of the direct solver grow rapidly – double number of nodes results in,

189

approximately, fourfold increase in the size of the [K] and [M]. Excluding all other arrays, it

gives 8 times more memory required to store these matrices (not mentioning the time required

to build them), what affects the final performance (time needed to assembly and later for

solving system of equations). Analysis of the solver always has to be supported by the

investigation of the memory usage.

3.3.3 Analysis setup, geometry and mesh –quarter of a cube.

Carrying out the calculations with use of the full cube is inefficient when geometry together

with boundary conditions are symmetric. In such a case, usage of part of a whole domain is

far more economical because it significantly affects the computational effort simultaneously

providing the same results. To do so, all body parts of the full cube have been suppressed

except for the ones belonging to chosen quarter. Because of Ansys that keeps suppressed

nodes, the selected quarter was re – meshed. As side research showed, the program written in

MATLAB coped with that case (suppressed nodes are present in stiffness and mass matrices,

but their coefficients are empty) and as a result, correct temperature field was obtained.

Whereas for all suppressed nodes it was "NaN" (Not a Number) instead of temperature value.

Analysis time differs from the one obtained after re – meshing and is a little bit higher.

Figure 27: Mesh of a quarter of the cube. 2015 elements and 9782 nodes.

Mesh of a quarter of the cube (Figure 27) consists of: 2015 elements and 9782 nodes and has

been generated in the same way as the mesh of the full cube. Whole analysis' setup remained

unchanged. To check, if the program works properly, short variant (362 iterations) has been

used.

190

3.3.4 Results – quarter of a cube.

In general, results from both analyzes (full and quarter of the cube, see Table 12) are almost

identical which means that the program works properly in case of reduced domain along its

axes of symmetry. Once again, too short time intervals result in negative temperatures due to

negative coefficients in RHS vector. It should be noted that maximum and minimum

temperatures hardly differs from those obtained in case of the full cube. Similar mesh gave

similar results.

Table 12: Minimum and maximum temperatures of the full and quarter of the geometry.

Geometry: Full. Quarter.

Time, s:
Temperature, ˚C.

Max. Min. Max. Min.

Ansys

0.001 318.64 -36.86 318.80 -36.79

0.19 5479.30 -8.82 5488.50 -11.09

0.5 191.62 18.00 191.39 18.00

MATLAB

0.001 317.88 -34.43 318.06 -34.47

0.19 5477.26 -8.90 5486.38 -12.42

0.5 191.33 18.00 191.17 18.00

One should keep in mind that, the quarter has been re – meshed so its mesh differs from the

one just after suppressing all other unnecessary bodies (after re – meshing number of elements

increased by about 400) despite the fact that none of the mesh setup parameters has been

changed. The maximum temperatures in case of the quarter are slightly higher than in case of

the full cube. Obviously, in considered case, the results depend on the mesh so in the future

further investigation will be necessary.

Figure 28 shows average percentage differences between nodal temperatures corresponding to

each other. Once again, solution provided by Ansys direct solver without mass matrix

lumping has been assumed as the accurate one.

191

Figure 28: Accuracy comparison of the selected factorizations and Ansys' direct solver.

Again, accuracy decreases in the course of applying NBC and reaches its lowest value in the

last step before turning off the heat flux. Both factorizations have the same accuracy.

Table 13 contains analyzes times and memory usage of the selected factorizations in

comparison to the Ansys' direct solver. MATLAB clearly became more efficient than Ansys.

Table 13: Analyzes times and memory usage of the Ansys' direct solver, LU and Cholesky

factorizations. Quarter of the geometry. Short variant.

Method: Analysis time, s: Memory used, Mb:

A_d_cmm 158.4 55

ML_chol_cmm 51.2 76.58

ML_lu_cmm 33.3 125.9

Figure 29 shows obtained times of the performed analyzes of the quarter of the geometry.

These times are calculated in the same manner as times provided by case of whole geometry

discussed before.

192

Figure 29: Analyzes times of the tested methods of solving linear systems of equations.

Reduced mesh (and geometry) results in improved performance of the program. It should be

stressed that, use of the hard drive as a way of storing factorized matrices, in this analyzes, has

been permanently turned off. Figure 30 presents memory usage of the considered methods.

Used memory has been obtained in the same way as in the previous case.

Figure 30: Memory usage of the tested methods of solving linear systems of equations.

As one can see, there is no major difference between Cholesky factorization carried out in

MATLAB and Ansys' direct solver. LU factorization requires memory the most

(approximately two times more than Ansys).

Finally, Cholesky factorization has been chosen as the method of solving Eq.(17) because of

its satisfying performance and memory usage in both tested variants. Mass matrix will not be

lumped due to serious loss of the accuracy and negligible impact on performance. Storing

temporary factorized matrices will not be used because of the Cholesky factorization

performance degradation.

193

4 Conclusions.

Performance of the code is one of the most important factors in the developing program for

determining thermal conductivity in a way described at the beginning of this work. Such a

program have to be efficient, because during the analysis it will be called and executed many

times until convergence of the TC is reached. For example, the analysis takes 10 minutes for

poorly optimized program. To determine the TC the program has to be called 100 times. This

brings a total of 1000 minutes for one full analysis. Another program, much better optimized,

needs 7 minutes only for completing the same one – run analysis. It also has to be called 100

times, but total time required to complete the full analysis amounts to 700 minutes only. This

gives saving of 300 minutes which equals to 5 hours. This is a lot of time and that is why a

good performance is so important to this program.

Mass matrix lumping is one of the available options provided by commercial software so it

was tested in this work. Main cause for which it was not implemented, was lower accuracy of

the code and negligible impact on the performance.

Obtained results from the MATLAB with use of 3
rd

 order quadrature at phases 1 and 2 and

with NBC applied, differ from, approximately, 0℃ to 1e-03℃ in comparison to the values
provided by MSC.Patran. In case of the 2

nd
 order quadrature those differences are much

higher and they are from about 1e-03℃ to 0.9℃. They reach maximum values at the nodes
to which NBC is applied and the smaller they are the further from the BC of the second
kind. In case of pure DBC those differences are negligible and do not depend on the used
quadrature's order.

In comparison to Ansys Transient Thermal (direct method without mass matrix lumping),

differences of the results are much higher and their maximum values are, again, at the nodes

to which NBC is applied. Global maximum differences are reached in the last step when NBC

is applied and amount to even about 12℃ while maximum temperature is about 5500℃. After

NBC removal, those differences drastically decreased to about 1e-02℃ or even less. The more
distant node is (from the NBC) the lower difference is between corresponding to each other

nodal temperatures provided by the Ansys' direct solver and factorization in MATLAB.

All of the Ansys' solvers (direct and iterative) were accurate with respect to each other

regardless of whether lumping was used or not. Most likely some additional unknown

procedure is performed, however manual does not refer to it.

Factorizations (direct method) have the same accuracy but they strongly differ from each

other in case of performance. The selection of the type of the factorization should be preceded

by the analysis of their efficiency for each particular case (number of nodes in the mesh,

number of iterations, number of time steps, available memory). As an example, in short

variant LU factorization was the best but in long variant Cholesky was better.

Mass matrix lumping in case of implicit scheme (BDM) has no major sense due to its

negligible impact on the performance. On the other hand, it strongly affects the results

damaging the accuracy, especially in early iterations. Lumping becomes justifiable in case of

dealing with huge geometry with use of explicit scheme and when computation's time is more

important than the accuracy.

194

Direct methods are faster and more accurate than iterative solvers but simultaneously they

require far more available memory.

Neumann's Boundary Condition, which simulates the laser, generates errors that grow with

time until it is turned off. The results from iterations after, approximately, 0.4 s from the

beginning of the numerical analysis, have very good accuracy and can be successfully used in

further computations.

Nature of the applying the NBC requires some amount of time to model temperature

distribution in a physical way.

During this work the program has been developed for the purposes of the project. This

program not only solves NBC – based transient heat transfer problems in orthotropic

materials, but also imports geometry data, exports solution data, has log module, error

reporting module and above all, is easy to manage, cheap (so to speak – free) and fully –

customizable. Furthermore, its performance as well as accuracy is not worse than Ansys'.

More information about the program features and capabilities can be found in Appendix A.

In the future, incorporation of the program into main algorithm for determining the TC will

have to be done. This will require the implementation of the calling (this program), data

managing and sharing(between the program and the main algorithm) procedures. In addition

to that, radiative heat losses will have to be implemented in order to make the obtained

temperature field more reliable. Last thing to do is to make density and specific heat

temperature – dependent.

References

[1]

Thermal Conductivity Measurements Methods,

http://tpm.fsv.cvut.cz/student/documents/files/BUM1/Chapter16.pdf, access 14 June

2016.

[2] W.P. Adamczyk et al., Retrieving thermal conductivities of isotropic and orthotropic

materials, Applied Mathematical Modelling (2015),

http://dx.doi.org/10.1016/j.apm.2015.10.028.

[3]

J. Parker, R. Jenkins, C. Butler, G. Abbott, Flash method of determining thermal

diffusivity, heat capacity and thermal conductivity, J. Appl. Phys. 32 (9) (1961) 1679–

1684.

[4] Description of MATLAB, website of the MathWorks,

http://www.mathworks.com/products/matlab/, access 2 June 2016.

[5] Website of the FileExchange provided by the MathWorks,

http://www.mathworks.com/matlabcentral/fileexchange/, access 2 June 2016.

[6] E. Kostowski, Przepływ Ciepła, Wydawnictwo Politechniki Śląskiej, Gliwice 2006, pp.

28.

[7] A. J. Nowak, ed, Numerical Methods in Heat Transfer, International Studies in Science

and Engineering, Gliwice, 2009, pp.77-96.

[8] J. Szargut, Modelowanie numeryczne pól temperatury, Wydawnictwo Naukowo -

Techniczne, Warszawa, 1992, pp. 113-115.

[9] O. C. Zienkiewicz, Metoda elementów skończonych, Warszawa, 1972, pp. 123-125.

195

[10] Finite Element Method – shape functions, website of the University of Colorado

Boulder,

http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch11.d/AFEM.

Ch11.pdf, access 2 June 2016.

[11] R.W. Lewis, K. Morgan, H.R. Thomas, K.N. Seetharamu, The Finite Element Method

in Heat Transfer Analysis, Wiley, 1996.

[12] Serendipity family of finite elements, website of the Cornell University Library,

http://arxiv.org/pdf/1101.0645.pdf, access 2 June 2016.

[13] Gaussian quadrature, website of the California State University Fullerton, Department

of Mathematics,

http://mathfaculty.fullerton.edu/mathews/n2003/GaussianQuadMod.html, access 2

June 2016.

[14] Jacobian matrix, website of the StachExchange, Mathematics,

http://math.stackexchange.com/questions/14952/what-is-jacobian-matrix, access 2

June 2016.

[15] Sarru's rule for calculating 3x3 matrix determinant, website of the Wikipedia,

https://en.wikipedia.org/wiki/Rule_of_Sarrus, access 2 June 2016.

[16] Lumped and consistent mass matrices, website of the Kielce University of Technology,

Department of Informatics,

http://kis.tu.kielce.pl//mo/COLORADO_FEM/colorado/IFEM.Ch31.pdf, access 2 June

2016.

[17] Left division, website of the MathWorks, Support,

http://www.mathworks.com/help/matlab/ref/mldivide.html?refresh=true, access 2 June

2016.

[18] P. Tarvydas, A. Noreika, Usability Evaluation of Finite Element Method Equation

Solvers, Electronics and Electrical Engineering, 2007, No. 2(74).

[19] Factorization written by Timothy Davis, FileExchange,

http://www.mathworks.com/matlabcentral/fileexchange/24119-don-t-let-that-inv-go-

past-your-eyes--to-solve-that-system--factorize-, access 2 June 2016.

[20] T. A. Davis, Algorithm 9xx, Factorize: an object – oriented linear system solver for

MATLAB, ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY, pp.

1-20.

[21] Preconditioned Conjugate Gradient, website of the Mathworks, Support,

http://www.mathworks.com/help/matlab/ref/pcg.html, access 2 June 2016.

196

Acknowledgements

I would like to express my immense gratitude to my supervisor

dr ing. Arkadiusz Ryfa for his infinite patience and all his time he devoted to me

and for that, he taught me basics of the Finite Element Method.

Necessary hardware and software have been provided by

the Institute of Thermal Technology for which I cordially thank.

I would like also wholeheartedly thank my dear mother

Ewa Tokarska for all the support she shown to me during my studies.

Thank you, Mum.

197

Analiza numeryczna pola temperatury w ortotropowej próbce

Mieszko Tokarski
2

e-mail: tomiesio@gmail.com

Słowa kluczowe: MATLAB, Ansys, FEM, Warunek Brzegowy Neumann'a, Faktoryzacja

Streszczenie

W pracy tej opisano proces tworzenia pogramu opartego na Metodzie Elementów

Skończonych a służącego do obliczania pola temperatury w ortotropowej próbce z

wykorzystaniem warunku brzegowego Neumann'a. Program ten został stworzony na potrzeby

projektu prowadzonego w Instytucie Techniki Cieplnej w Gliwicach. Stanowi on ważną część

zautomatyzowanej procedury mającej wyznaczać współczynnik przewodzenia ciepła badanej

próbki poprzez dopasowanie rozkładu temperatury otrzymanego na drodze obliczeń

numerycznych z rozkładem temperatury otrzymanym z pomiarów. Z racji specyfiki pomiarów

oraz samej procedury sterującej całą analizą, stworzony program charakteryzuje się dużą

wydajnością porównywalną do wydajności Ansysa (dla tego samego przypadku),

wystarczającą dokładnością oraz przygotowaniem do sprzęgnięcia z głównym algorytmem.

Najważniejszymi cechami tego programu są: moduł do importu geometrii z Ansysa, moduł do

eksportu danych dla algorytmu sterującego, dwa pliki tekstowe umożliwiające łatwe

zarządzanie tym kodem (zwłaszcza w przypadku sterowania przez zewnętrzny program),

logowanie działania programu oraz raportowanie o błędach.

2
Autor przygotował niniejszy rozdział podczas pracy nad projektem dyplomowym

magisterskim wykonywanym przez autora w Instytucie Techniki Cieplnej na Wydziale

Inżynierii Środowiska i Energetyki Politechniki Śląskiej pod opieką dr inż. Arkadiusza Ryfy.

Prace były prowadzone w ramach projektu naukowego realizowanego w Instytucie Techniki

Cieplnej.

198

Appendix A

Features of the developed program

One can distinguish three main characteristic features of the code:

 Consistency – the code written in MATLAB is executed line by line, so it is logical

and without any unnecessary commands, for example clearing variable just to load it

again in another line. The same applies to the variables and external functions – they

are well named to make sense without thinking too much. Repetition of the lines of the

code is also eliminated, because this makes editing and debugging the code easier due

to lack of necessity of modifying additional lines.

 Simplicity and transparency – program has been written in such a way that it can be
easily debugged and modified. This has been achieved by the use of basic functions,

for instance 'For' loops instead of more sophisticated nested functions like 'cellfun' or

'bsxfun'. In case of MATLAB, 'For' loop has better performance than most of the other

functions. Another thing that makes debugging easier is modular design. Grouping of

the code into smaller pieces responsible for strictly specified tasks is a good habit and

it helps one finding procedural errors.

 Forethought – this program can be easily extended with new functions and procedures
without major changes into already existing code.

The program is started with use of batch file to call MATLAB's command line and to declare

all necessary directories automatically. It consists of:

 startPanel_0 - main procedure which calls and coordinates all others,

o globalVar – structural variable storing all global variables (program's memory),

o var_GDefine_1 – import module, uses UserSettings.txt,

 import_NCoords_2 – subprogram for nodal coordinates import from

Ansys' geometry output files,

 import_Connectivity_3 – subprogram for connectivity matrix import

import from Ansys' geometry output files,

 import_MConstants_4 – subprogram for material properties import

from Ansys' geometry output files,

 import_FENodes_5 – subprogram for face and emission nodes import

from Ansys' geometry output files,

 import_USetup_6 – subprogram for user setup data import from

UserSetup.txt file,

o un_varDelete_0 – subprogram responsible for clearing all of unnecessary

variables from memory,

o MatCon - main subprogram for building system of equations,

 Ansys_N_order – function responsible for proper nodal reordering,

 Ansys_N_order_8n – function responsible for building connectivity
matrix in order to apply NBC,

 LaserRadius – function controlling laser's diameter,

 Ni – function with shape functions 20 – node hexahedron, PATRAN's

order,

199

 Shape_functions_Patran_8n – function with shape function 8 – node

quadrilateral, PATRAN's order,

 dNdksi_Patran_20n – function with shape functions' 3d derivatives,

 dNdksi_PAtran_8n – function with shape functions' 2d derivatives,

o Solver – main subprogram for solving linear systems of equations,

 Factorize – algorithm written by Timothy Davis,

 MemoryCheck – function computing memory usage by variables in the

workspace.

Whole program is controlled with use the of two text files (Figure 31 and Figure 32):

 UsetSettings.txt – defining geometry file and its components to import:
o nodal coordinates,

o connectivity matrix,

o material properties (disabled by default),

o face and emission nodes,

 UserSetup.txt – defining setup of the analysis:

o density,

o specific heat,

o TC components x, y, z,

o laser beam radius,

o laser heat flux,

o initial temperature,

o laser emission time,

o camera recording start time,

o camera recording times (in fact time increments)– this vector can be almost

freely long and that is why it is at the very end of the file.

The program checks for last modification date of UserSettings and UserSetup and compares

them with ones already stored as variables in structural array globalVar. If they differ from

each other then program overwrites them and executes proper procedures of import (when

UserSettings date variable is overwritten) and/or overwrites setup variables (when UserSetup

date variable is overwritten). In special case while such date variable or variables do not exist,

they are created as new ones and again all necessary procedures are executed.

200

Figure 31: UserSettings.txt input file. Figure 32: UserSetup.txt input file.

All subprograms and functions are vectorized and optimized in order to achieve as high

performance as possible. Moreover, the program is fully automated – besides input text files

(UserSettings.txt and UserSetup.txt) does not require any other user interference. It should be

stressed that, with use of input files (that will be prepared by the main algorithm or user) it

can be easily managed by the external procedures.

Results are saving into specially created folder in working directory named

"Results_YYYY.MM.DD__hh.mm.ss", where " YYYY.MM.DD__hh.mm.ss" is current date

and time:

 YYYY – year,

 MM – month,

 DD – day,

 hh – hours,

 mm – minutes,

 ss – seconds.

Results are stored as .dat files named "T(s).dat", where "(s)" is step number.

Figure 33 and Figure 34 show exemplary folder with exemplary files with results.

Additionally to these files, analysis' configuration file is attached.

201

Figure 33: Folder containing analysis' results.

Figure 34: Files .dat with results together with UserSetup.txt which stores analysis'

configuration.

202

Each T(s).dat file contains: all nodes of heating surface, nodal coordinates, nodal temperatures

and, additionally, current analysis' time, current time step and current iteration number.

Exemplary T(s).dat file is showed in Figure 35.

Figure 35: Files .dat with results together with UserSetup.txt which stores analysis'

configuration.

Logfile.txt (Figure 36) is created in the main directory. All statements about executed or

skipped procedures are stored in that file. Also errors and warning reports as soon any occurs.

Memory usage and analysis time are also reported. Furthermore, logfile.txt and UserSetup.txt

are copied into results' folder to provide additional information about the process and its

configuration each time the analysis is performed.

203

Figure 36: Exemplary part of the logfile.txt. It provides information about executed or skipped

procedures, analysis' time and memory usage.

204

