PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wpływ glukonianu i cytrynianu sodu na konsystencję zaczynów z półwodnego gipsu α upłynnianego superplastyfikatorem polikarboksylanowym

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Effect of sodium gluconate and citrate on fluidity of alpha-hemihydrate gypsum paste plasticized by polycarboxylate superplasticizer
Języki publikacji
PL EN
Abstrakty
PL
W pracy przedstawiono wyniki badań wpływu cytrynianu oraz glukonianu sodu na właściwości zaczynów z półwodnego siarczanu wapnia odmiany alfa, upłynnianych dodatkiem superplastyfikatora polikarboksylanowego [PA]. Na podstawie uzyskanych wyników stwierdzono, że zdolność do adsorpcji cytrynianu sodu jest znacznie większa od glukonianu, ze względu na większą zdolność tego pierwszego do tworzenia kompleksów chelatowych z jonami wapnia. W przypadku równoczesnego dodatku plastyfikatora i opóźniacza zachodzi adsorpcja wymienna. Cytrynian oraz glukonian sodu opóźniają hydratację gipsu, przy czym efekt opóźniający cytrynianu jest znacznie większy niż glukonianu, ze względu na większą zdolność tego pierwszego do adsorpcji na ziarnach półwodzianu. Przyczyną poprawy konsystencji jest mniejsza ilość zużytej wody i PA, spowodowana działaniem opóźniającym, a przyczyną pogorszenia konsystencji jest mniejsza ilość zaadsorbowanego PA wynikająca z adsorpcji wymiennej cytrynian lub glukonian i PA. W przypadku glukonianu sodu dominuje pierwszy efekt co powoduje poprawę płynności zaczynu, a dla cytrynianu przeważa drugi efekt co wpływa na jej pogorszenie.
EN
The effect of sodium gluconate and sodium citrate on the fluidity of gypsum paste of α hemihydrate plasticized by polycarboxylate superplasticizer [PCE] was investigated. The results have shown that both retarders are adsorbed on the surface of gypsum particles, and the adsorption ability of citrate is much higher than that of gluconate, probably due to the more developed ability of citrate to form chelate complexes with calcium ions. In the case of simultaneous addition of PCE and retarder to hemihydrate paste, the competitive adsorption takes place. The retarding effect of citrate is much stronger than that of gluconate, because of the higher adsorption ability of citrate. Sodium gluconate increase the fluidity of the gypsum paste plasticized by PCE, while citrate reduce it. The reason for the increase of fluidity is due to the reduced consumption of free water and PCE caused by hydration of hemihydrate. Retarding effect is due to the reduced adsorption of PCE, resulting from competitive adsorption with retarder. The latter effect dominates for citrate, resulting in decreased fluidity, while first effect is dominating for gluconate, resulting in increased fluidity.
Czasopismo
Rocznik
Strony
144--158
Opis fizyczny
Bibliogr. 39 poz., il., tab.
Twórcy
autor
  • School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, China
autor
  • School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, China
autor
  • School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, China
Bibliografia
  • 1. E. M. Gartner. “Cohesion and expansion in polycrystalline solids formed by hydration reactions – The case of gypsum plasters”. Cem. Concr. Res. 39, 289-295 (2009).
  • 2. Q. L. Yu and H. J. H. Brouwers. “Microstructure and mechanical properties of β-hemihydrate produced gypsum: An insight from its hydration process”. Constr. Build. Mater. 25, 3149-3157 (2011).
  • 3. Z. Z. Zhi, B. G. Ma, S. W. Jian. “Application of new types of retarders in improving the properties of FGD gypsum”. ZKG Int. 68: 46-53 (2015).
  • 4. Z. Zhi, J. Huang, Y. Guo. “Effect of chemical admixtures on setting time, fluidity and mechanical properties of phosphorus gypsum based self-leveling mortar”. KSCE J Civ. Eng. 21, 1836-1843 (2017).
  • 5. H. Tan, Y. Guo, F. Zou. “Effect of borax on rheology of calcium sulphoaluminate cement paste in the presence of polycarboxylate superplasticizer”. Constr. Build. Mater. 31, 277-285 (2017).
  • 6. H. Tan, X. Li, C. He. “Utilization of Lithium Slag as An Admixture in Blended Cements: Physico-mechanical and Hydration Characteristics”. Journal of Wuhan University of Technology-Materials Science Edition, 30, 129-133 (2015).
  • 7. J. Plank, E. Sakai, C. W. Miao. “Chemical admixtures — Chemistry, applications and their impact on concrete microstructure and durability”. Cement and Concrete Research, 78: 81-99 (2015).
  • 8. H. Tan, Y. Guo, B. Ma. “Adsorbing Behavior of Polycarboxylate Superplasticizer in the Presence of Ester Group in Side Chain”. J. Dispersion Sci. Technol. 38, 743-749 (2017).
  • 9. B. H. Guan, Q. Q. Ye, J. L. Zhang. “Interaction between alpha-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process”. Cem. Concr. Res. 40, 253-259 (2010).
  • 10. J. Peng, J. Qu, J. Zhang. “Adsorption characteristics of water-reducing agents on gypsum surface and its effect on the rheology of gypsum plaster”. Cem. Concr. Res. 35, 527-531 (2005).
  • 11. L. Fu, Z. Deng, Y. Zhang. “Effect of molecular structure of polycarboxylate superplasticizers on gypsum dispersion”. Acta Polymerica Sinica: 294-301 (2011).
  • 12. A. Ersen, A. Smith, T. Chotard. “Effect of malic and citric acid on the crystallisation of gypsum investigated by coupled acoustic emission and electrical conductivity techniques”. J. Mater. Sci., 41, 7210-7217 (2006).
  • 13. Z. Li, J. Peng, X. Qiu. “Influence of CA Retarder on Properties of Recycled Gypsum and Its Mechanism”. Journal of Sichuan University. Engineering Science Edition, 47, 198-203 (2015).
  • 14. H. Tan, F. Zou, B. Ma. “Effect of sodium tripolyphosphate on adsorbing behavior of polycarboxylate superplasticizer”. Constr. Build. Mater. 126, 617-623 (2016).
  • 15. H. Tan, X. Li, J. Huang. “Effect of competitive adsorption between polycarboxylate superplasticiser and sodium tripolyphosphate on cement paste fluidity”. Adv. Cem. Res. 27, 593-600 (2015).
  • 16. H. Tan, F. Zou, B. Ma. “Effect of competitive adsorption between sodium gluconate and polycarboxylate superplasticizer on rheology of cement paste”. Constr. Build. Mater. 144, 338-346 (2017).
  • 17. F. Zou, H. Tan, Y. Guo. “Effect of sodium gluconate on dispersion of polycarboxylate superplasticizer with different grafting density in side chain”. Journal of Industrial and Engineering Chemistry, 55: 91-100 (2017).
  • 18. J. Plank and C. Winter. “Competitive adsorption between superplasticizer and retarder molecules on mineral binder surface”. Cem. Concr. Res. 38, 599-605 (2008).
  • 19. G. Li, T. He, D. Hu. “Effects of retarders on the fluidity of pastes containing β-naphthalenesulfonic acid-based superplasticiser". Adv. Cem. Res. 24, 203-210 (2012).
  • 20. G. Gelardi, N. Sanson, G. Nagy. “Characterization of Comb-Shaped Co-polymers by Multidetection SEC, DLS and SANS”. Polymers, 9: 61 (2017).
  • 21. M. Neuville, G. Bossis, J. Persello. “Rheology of a gypsum suspension in the presence of different superplasticizers”. J. Rheol., 56: 435-451 (2012).
  • 22. H. Tan, B. Gu, B. Ma. “Mechanism of intercalation of polycarboxylate superplasticizer into montmorillonite”. Appl. Clay Sci. 129, 40-46 (2016).
  • 23. Y. Zhang and X. Kong. “Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes”. Cem. Concr. Res. 45, 1-9 (2015).
  • 24. T. Hirata, J. Ye, P. Branicio. “Adsorbed Conformations of PCE Superplasticizers in Cement Pore Solution Unraveled by Molecular Dynamics Simulations”. Sci Rep, 7: 16599 (2017).
  • 25. H. Tan, F. Zou, M. Liu. “Effect of the Adsorbing Behavior of Phosphate Retarders on Hydration of Cement Paste”. J. Mater. Civ. Eng. 29, 04017088 (2017).
  • 26. B. Ma, Y. Peng, H. Tan. “Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer”. Constr. Build. Mater. 160, 341-350 (2018).
  • 27. A. Zingg, F. Winnefeld, L. Holzer. “Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases”. J Colloid Interface Sci, 323: 301-12 (2008).
  • 28. Y. Guo, B. Ma, Z. Zhi. “Effect of polyacrylic acid emulsion on fluidity of cement paste”. Colloids Surf., A, 535: 139-148 (2017).
  • 29. J. Plank, C. Hirsch. “Impact of zeta potential of early cement hydration phases on superplasticizer adsorption”. Cem. Concr. Res. 37, 537-542 (2007).
  • 30. J. Plank, B. Sachsenhauser. “Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution”. Cem. Concr. Res. 39, 1-5 (2009).
  • 31. K. Yamada, S. Ogawa, S. Hanehara. “Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase”. Cem. Concr. Res. 31, 375-383 (2001).
  • 32. A. Hallal, E. H. Kadri, K. Ezziane. “Combined effect of mineral admixtures with superplasticizers on the fluidity of the blended cement paste”. Constr. Build. Mater. 24, 1418-1423 (2010).
  • 33. F.-r. Kong, L.-s. Pan, C.-m. Wang. “Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste”. Constr. Build. Mater. 105, 545-553 (2016).
  • 34. E. Janowska-Renkas. “The effect of superplasticizers’ chemical structure on their efficiency in cement pastes”. Constr. Build. Mater. 38, 1204-1210 (2013).
  • 35. H. B. Bey, J. Hot, R. Baumann. “Consequences of competitive adsorption between polymers on the rheological behaviour of cement pastes”. Cem. Concr. Comp. 54, 17-20 (2014).
  • 36. H. Bessaies-Bey, R. Baumann, M. Schmitz. “Organic admixtures and cement particles: Competitive adsorption and its macroscopic rheological consequences”. Cem. Concr. Res. 46, 1-9 (2016).
  • 37. H. Tan, J. Huang, B. Ma. “Effect of superplasticiser and sodium tripolyphosphate on fluidity of cement paste”. Mag. Concrete Res. 66, 1194-1200 (2014).
  • 38. P. Jiahui, Z. Jianxin, C. Mingfeng. “Influence of macromolecule-type retarders on the hydration process of building gypsum and its retarding mechanism”. Journal of the Chinese Silicate Society, 36, 896-900 (2008).
  • 39. J. Peng, M. Chen, J. Zhang. “Influnce of Organic Acid Structure on Crystal Morphology of alpha-hemihydrate Desulfurization Gypsum and Its Crystal Modification Mechanism”. Journal of Sichuan University. Engineering Science Edition, 44, 166-172 (2012).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80cbc667-cdfa-4e6a-89d9-179d10de2bb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.