Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Experimentally substantiate the possibility of using the developed jet-centrifugal spraying device in plants spraying technologies. Design/methodology/approach: Many years of experience in creating spraying devices for solving practical problems in various industries made it possible to propose a design diagram of a single-phase jet-centrifugal spraying device. The tests were aimed at achieving device characteristics that are acceptable for use in plants spraying technologies such as jet coverage distance, droplet size and droplet deposition area (spray diameter). For this a several tests series with different design parameters was done. Before testing, the tightness of the device body was checked (the holding time under a pressure of 1 MPa is not less than 2 minutes). Findings: Based on the obtained jet coverage distance, droplet size and droplet deposition area, the developed spray device of some modifications can be used in plants spraying technologies. However, it is necessary to determine the quality of the spray device according to the BCPC classification; the device should be tested with some insecticides, fungicides and in plants spraying technologies to develop recommendations for their use. Research limitations/implications: The influence of design features of developed jetcentrifugal spray device on the jet coverage distance, droplet size and droplet deposition area was studied. Practical implications: The results obtained are useful in the field of improving national plants spraying technologies in order to improve the quality of the plant protection agent application and reduce the loss of the drug into the environment. Originality/value: To ensure maximum efficiency the proposed design of the jetcentrifugal spray device can be upgraded directly by the farmer by installing interchangeable nozzles that are attached with a union nut. Replaceable nozzles have different diameters and modifications and can be selected depending on the required jet coverage distance and spraying dispersion according to the current environmental conditions.
Wydawca
Rocznik
Tom
Strony
30--41
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
- Life Safety and Law Department, Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
autor
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India
autor
- Department of Civil Engineering, Jazan University, 114 Jazan, Saudi Arabia
autor
- Life Safety and Law Department, Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
autor
- Department of logistics and technical support of rescue operations, National University of Civil Defence of Ukraine, Kharkiv, Ukraine
autor
- Department of logistics and technical support of rescue operations, National University of Civil Defence of Ukraine, Kharkiv, Ukraine
autor
- Department of logistics and technical support of rescue operations, National University of Civil Defence of Ukraine, Kharkiv, Ukraine
autor
- H.S. Skovoroda Kharkiv National Pedagogical University, Kharkiv, Ukraine
Bibliografia
- [1] W.A. Shands, G.W. Simpson, Spraying potatoes to prevent leaf roll spread by the green peach aphid, American Potato Journal 49/1 (1972) 23-34. DOI: https://doi.org/10.1007/BF02862938
- [2] P.K. Roy, X.Z. Li, F.A. Basir, A. Datta, J. Chowdhury, Effect of insecticide spraying on Jatropha curcas plant to control mosaic virus: a mathematical study, Communications in Mathematical Biology and Neuroscience 2015 (2015) 36.
- [3] H. Dou, C. Zhang, L. Li, G. Hao, B. Ding, W. Gong, P. Huang, Application of variable spray technology in agriculture, IOP Conference Series: Earth and Environmental Science 186/5 (2018) 012007. DOI: https://doi.org/10.1088/1755-1315/186/5/012007
- [4] A.I. Belousova, A.V. Moiseev, D.A. Fillipov, Design of a sprayer for complex treatment of tilled crops, E3S Web of Conferences 126 (2019) 00013. DOI: https://doi.org/10.1051/e3sconf/201912600013
- [5] S. Singh, D. Padhee, S. Sonwani, T. Sahu, Design, Fabrication and Evaluation of Wheel Operated Sprayer, International Journal of Current Microbiology and Applied Sciences 9/1 (2020) 1649-1659. DOI: https://doi.org/10.20546/ijcmas.2020.901.182
- [6] A. Bayat, M. Itmec, The current state of sprayer manufacturers in Turkey and some strategies for the future, Scientific Papers. Series A: Agronomy 61/2 (2018) 121-125.
- [7] Farmers’ Portal, Plant protection equipment. Available from: https://farmer.gov.in/dacdivision/Machinery1/chap4.pdf
- [8] G. Matthews, Pesticide application methods, Third Edition, John Wiley & Sons, London, UK, 2008.
- [9] M. Niţu, M. Matache, A. Pruteanu, I. Găgeanu, A. Matache, D. Dumitru, F. Sîrbu, Aspects on the construction and operation of spraying equipment for reducing drift in field crops, Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series 48/2 (2019) 357-366.
- [10] W. Stahli, S. Bungescu, Devices, equipment and machines for plant protection, Agroprint Usamvbt Pub., Timişoara, 2006.
- [11] Primary Industries Standing Committee, Spray drift management: principles, strategies and supporting information, Series: Primary Industries Report Series, Report no. 82, CSIRO Publishing, 2020. Available from: https://www.publish.csiro.au/book/3452/#details
- [12] K. Remoundou, M. Brennan, G. Sacchettini, L. Panzone, M.C. Butler-Ellis, E. Capri, A. Charistou, E. Chaideftou, M.G. Gerritsen-Ebben, K. Machera, P. Spanoghe, R. Glass, A. Marchis, K. Doanngoc, A. Hart, L.J. Frewer, Perceptions of pesticides exposure risks by operators, workers, residents and bystanders in Greece, Italy and the UK, Science of the Total Environment 505 (2015) 1082-1092. DOI: https://doi.org/10.1016/j.scitotenv.2014.10.099
- [13] E. Lichtenberg, R. Zimmerman, Information and farmers’ attitudes about pesticides, water quality, and related environmental effects, Agriculture, Ecosystems & Environment 73/3 (1999) 227-236. DOI: https://doi.org/10.1016/S0167-8809(99)00053-5
- [14] E. Cerruto, G. Manetto, F. Santoro, S. Pascuzzi, Operator dermal exposure to pesticides in tomato and strawberry greenhouses from hand-held sprayers, Sustainability 10/7 (2018) 2273. DOI: https://doi.org/10.3390/su10072273
- [15] D.J. Snelder, M.D. Masipiqueña, G.R. De Snoo, Risk assessment of pesticide usage by smallholder farmers in the Cagayan Valley (Philippines), Crop Protection 27/3-5 (2008) 747-762. DOI: https://doi.org/10.1016/j.cropro.2007.10.011
- [16] M. İtmeç, A. Bayat, Modal Analysis of Different Boom Designs of Field Sprayers with a CAD Program, Proceedings of the 1st International Congress on Biosystems Engineering “ICOBEN2019”, Antakya, Hatay, Turkey, 2019, 114. Available form: http://icoben2019.mku.edu.tr/files/2019-12-ICOBEN2019-Proceeding-E-book-2-final.pdf#page=117
- [17] S. Vambol, V. Vambol, K.A.H. Al-Khalidy, Experimental study of the effectiveness of water-air suspension to prevent an explosion, IOP Conference Series: Journal of Physics 1294/7 (2019) 072009. DOI: https://doi.org/10.1088/1742-6596/1294/7/072009
- [18] R.A. Berube, Effective temperature control for cement kiln off-gases, World Cement 27/3 (1996) 77-82. Available form: http://www.cheresources.com/cementkiln.shtml
- [19] S. Vambol, Y. Shakhov, V. Vambol, I. Petukhov, A mathematical description of the separation of gas mixtures generated by the thermal utilization of waste, Eastern-European Journal of Enterprise Technologies 2/79 (2016) 35-41. DOI: https://doi.org/10.15587/1729-4061.2016.60486
- [20] S.O. Vambol, N.V. Kobrina, O.O. Trukhmayev, Systema upravlinnya ekolohichnoyu bezpekoyu pry vykorystanni pylopryhnichuyuchykh system zroshennya u protsesi navantazhennya ta rozvantazhennya sypkykh materialiv u portakh, Otkrytye Ynformatsyonnye y Kompʹyuternye Yntehryrovannye Tekhnolohyy 55 (2012) 161-167.
- [21] V. Vambol, S. Vambol, O. Kondratenko, V. Koloskov, Y. Suchikova, Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production, Journal of Achievements in Materials and Manufacturing Engineering 87/2 (2018) 77-84. DOI: https://doi.org/10.5604/01.3001.0012.2830
- [22] I.A. Lepeshinskiy, Novaya tekhnologiya polucheniya gazokapel'nykh struy i sistemy pozharotusheniya na yeye osnove, Konversiya v Mashinostroyenii 1-2 (2005) 117-123.
- [23] V.K. Tewari, A.K. Chandel, B. Nare, S. Kumar, Sonar sensing predicated automatic spraying technology for orchards. Current Science 115/6 (2018) 1115-1123. DOI: https://doi.org/10.18520/cs/v115/i6/1115-1123
- [24] K.J. Ahmed, Q. Ali, I. Nadeem, M.F. Akhtar, N.A. Anjum, A. Abbas, M.K. Hanif, Comparative effectiveness of different sprayers against cotton whitefly (Bemisia Tabaci Genn.), Journal of Agricultural Research 58/1 (2020) 9-12.
- [25] J.J. Spillman, Evaporation from freely falling droplets, The Aeronautical Journal 88/875 (1984) 181-185. DOI: https://doi.org/10.1017/S0001924000020479
- [26] J.R. di Oliveira, M.D.C. Ferreira, R.A. Román, Diferentes diâmetros de gotas e equipamentos para aplicação de inseticida no controle de Pseudoplusia includens, Engenharia Agrícola 30/1 (2010) 92-99. DOI: https://doi.org/10.1590/S0100-69162010000100010
- [27] M.E. Teske, J.W. Barry, B. Richardson, An FSCBG sensitivity study for decision support systems, Proceedings of the ASAE Annual Meeting, Phoenix, AZ, USA, 1996, 961037.
- [28] J.C. Van de Zande, H. Stallinga, J.M.G.P. Michielsen, P. Van Velde, Effect of sprayer speed on spray drift, Annual Review of Agricultural Engineering 4/1 (2005) 129-142.
- [29] S. Chen, Y. Lan, J. Li, X. Xu, Z. Wang, B. Peng, Evaluation and test of effective spraying width ofaerial spraying on plant protection UAV, Transactions of the Chinese Society of Agricultural Engineering 33/7 (2017) 82-90. DOI: https://doi.org/10.11975/j.issn.1002-6819.2017.07.011
- [30] J.D. Cavalieri, C.G. Raetano, R.P. Madureira, L.L. Moreira, Spraying systems and traveling speed in the deposit and spectrum of droplets in cotton plant, Engenharia Agrícola 35/6 (2015) 1042-1052. DOI: https://doi.org/10.1590/1809-4430-Eng.Agric.v35n6p1042-1052/2015
- [31] T. Arvidsson, L. Bergström, J. Kreuger, Spray drift as influenced by meteorological and technical factors, Pest Management Science 67/5 (2011) 586-598. DOI: https://doi.org/10.1002/ps.2114
- [32] D. Nuyttens, M. De Schampheleire, P. Verboven, B. Sonck, Comparison between indirect and direct spray drift assessment methods, Biosystems Engineering 105/1 (2010) 2-12. DOI: https://doi.org/10.1016/j.biosystemseng.2009.08.004
- [33] D. Nuyttens, M. De Schampheleire, K. Baetens, E. Brusselman, D. Dekeyser, P. Verboven, Drift from field crop sprayers using an integrated approach: results of a five-year study, Transactions of the ASABE 54/2 (2011) 403-408.
- [34] A. Miranda-Fuentes, P. Marucco, E.J. González-Sánchez, E. Gil, M. Grella, P. Balsari, Developing strategies to reduce spray drift in pneumatic spraying in vineyards: Assessment of the parameters affecting droplet size in pneumatic spraying, Science of the Total Environment 616-617 (2018) 805-815. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.242
- [35] H. De Ruiter, H.J. Holterman, C. Kempenaar, H.G.J. Mol, J.J. de Vlieger, J. van de Zande, Influence of Adjuvants and Formulations on the Emission of Pesticides to the Atmosphere, A Literature Study for the Dutch Research Programme Pesticides and the Environment (DWK) Theme C-2, Plant Research International B.V.: Wageningen, The Netherlands, 2003, Report 59.
- [36] P.A. Hobson, P.C.H. Miller, P.J. Walklate, C.R. Tuck, N.M. Western, Spray drift from hydraulic spray nozzles: the use of a computer simulation model to examine factors influencing drift, Journal of Agricultural Engineering Research 54/4 (1993) 293-305. DOI: https://doi.org/10.1006/jaer.1993.1022
- [37] P. Miller, The measurement of spray drift, Pesticide Outlook 14/5 (2003) 205-209. DOI: https://doi.org/10.1039/B311466J
- [38] C. Stainier, M.F. Destain, B. Schiffers, F. Lebeau, Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model, Communications in Agricultural and Applied Biological Sciences 71/2A (2006) 197-200.
- [39] Y. Song, L.J. Zhang, W.N. Chen, Y.K. Li, Design and Experiment of A New Boom Sprayer Extending and Folding Mechanism, Journal of Shenyang Agricultural University 2 (2018) 8.
- [40] P. Balsari, E. Gil, P. Marucco, J.C. van de Zande, D. Nuyttens, A. Herbst, M. Gallart, Field-crop-sprayer potential drift measured using test bench: Effects of boom height and nozzle type, Biosystems Engineering 154 (2017) 3-13. DOI: https://doi.org/10.1016/j.biosystemseng.2016.10.015
- [41] Telescope holder. Available from: http://galaktikaru.ru/wp-content/uploads/2012/09/27.jpg
- [42] Telescope mount Altazimuth. Available from: https://www.hotpng.com/free-png-clipart-tzhzc
- [43] M. Al Heidary, J.P. Douzals, C. Sinfort, A. Vallet, Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review, Crop Protection 63 (2014) 120-130. DOI: https://doi.org/10.1016/j.cropro.2014.05.006
- [44] P. Ziarati, V. Vambol, S. Vambol, Use of inductively coupled plasma optical emission spectrometry detection in determination of arsenic bioaccumulation in Trifolium pratense L. from contaminated soil, Ecological Questions 31/1 (2020) 15-22. DOI: https://doi.org/10.12775/EQ.2020.003
- [45] A. Shulha, V. Pavlykivskyi, O. Khramtsov, L. Borysova, Case study of socio-legal conditionality of establishing a ban on criminal acts concerning land resources, Ecological Questions 32/1 (2021) 1-18. DOI: https://doi.org/10.12775/EQ.2021.006
- [46] O. Kruzhilko, V. Maystrenko, V. Kalinchyk, Y. Polukarov, L. Mitiuk, N. Bilotserkivska, L. Borysova, T. Kachur, Development of the effective information and analytical support of the OSH management system, Journal of Achievements in Materials and Manufacturing Engineering 99/2 (2020) 72-84. DOI: https://doi.org/10.5604/01.3001.0014.1777
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80cabba3-f434-4714-b093-42ed1089ac8d