Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study properties of geodesic foliations on the flat, n-dimensional torus. Using the isomorphism of the Hodge star, we obtain some facts concerning compact totally geodesic surfaces (which are the leaves of geodesic foliations). We compute the p-module of a geodesic foliation. On the basis of these results, we derive a kind of reciprocity formula for the product of modules of two orthogonal foliations. We relate this product with the number of intersections of their leaves. We also obtain a formula for a product of modules of a finite number of geodesic foliations.
Słowa kluczowe
Rocznik
Tom
Strony
61--72
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science University of Lodz, Poland
Bibliografia
- [1] Ciska M., Pierzchalski A., On the modulus of level sets of conjugate submersions, Differential Geometry and its Applications, to appear.
- [2] Federer H., Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg -New York 1969.
- [3] Skolem T.H, Diophantische Gleichungen, Verlag von Julius Springer, Berlin 1938.
- [4] Warner F.W., Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, Berlin 1983.
- [5] Candel A., Conlon L., Foliations I. American Mathematical Society, Providence Rhode Island 2000.
- [6] Pierzchalski A., The k-module of level sets of differential mappings, Scientific Communications of the Czechoslovakian-GDR-Polish School on Differential Geometry at Boszkowo (1978), Math. Inst. Polish Acad. Sci., Warsaw, 180-185 1979.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80ca7e83-a006-4a9b-aea2-8b60aa1c2082