PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Study on the mechanical behaviors and failure mechanism of polyurethane cement composites under uniaxial compression and tension

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The brittle nature of concrete limits the further development, while the addition of polymer can enhance the toughness and improve the working performance. Understanding the mechanical properties and failure mode of polyurethane cement composites (PUCC) is of great significance in the field of construction engineering. To solve these issues, in this paper, the tensile and compressive properties are studied. The tensile/compressive strength, elastic modulus, toughness, strain capacity and the failure mechanism were analyzed. The results showed that compared with the reference group (RF), the compressive strength of PUCC was decreased by 33%. However, rubber powder could enhance the toughness of samples up to 1.19 times than RF. Polyethylene fiber was hard to disperse because of the poor fluidity of the matrix, therefore, the mechanical properties of PUCC did not change obviously. But due to the bridging effect of fiber, the failure mode was relative intact. Not only the irregular shape of basalt would decrease the interfacial adhesion, but also the polyurethane has weakened the cohesion. The mechanical properties of concrete were reduced because of the formation of interfacial transition zone between basalt and cement matrix. Therefore, the tensile and compressive strength was decreased by 19.7% and 11.8%, respectively. Moreover, the incorporation of basalt shortens the deformation time and intensifies the failure degree of the specimen. Moreover, this study takes a three-stage model to describe the compressive stress–strain behavior of PUCC. There is a good correlation between the constitutive model and the experimental results, and the simulation is accurate.
Rocznik
Strony
art. no. e18, 2022
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
autor
  • Department of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
autor
  • Department of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Jiangsu Key Laboratory of Construction Materials, Department of Materials Science and Engineering, Southeast University, Nanjing 211189, China
  • College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
Bibliografia
  • 1. Lee SH, Lee SJ, Park JG, Choi Y. An experimental study on the characteristics of polyurethane-mixed coarse aggregates by large-scale triaxial test. Constr Build Mater. 2017;145:117–25. https://doi.org/10.1016/j.conbuildmat.2017.03.107.
  • 2. Huang W, Xu H, Fan Z, Ao Y, Liu J. Compressive response of composite ceramic particle-reinforced polyurethane foam. Polym Test. 2020;87:106514. https://doi.org/10.1016/j.polymertesting.2020.106514.
  • 3. Lee KS, Choi J, Park SE, Hwang J, Lee BY. Damping property of prepacked concrete incorporating coarse aggregates coated with polyurethane. Cement Concr Compos. 2018;93:301–8. https://doi.org/10.1016/j.cemconcomp.2018.06.018.
  • 4. Hong B, Lu G, Gao J, Wang D. Evaluation of polyurethane dense graded concrete prepared using the vacuum assisted resin transfer molding technology. Constr Build Mater. 2021;269:121340. https://doi.org/10.1016/j.conbuildmat.2020.121340.
  • 5. Gao J, Wang H, Chen J, Meng X, You Z. Laboratory evaluation on comprehensive performance of polyurethane rubber particle mixture. Constr Build Mater. 2019;224:29–39. https://doi.org/10.1016/j.conbuildmat.2019.07.044.
  • 6. Hussain HK, Liu GW, Yong YW. Experimental study to investigate mechanical properties of new material polyurethane–cement composite (PUC). Constr Build Mater. 2014;50:200–8. https://doi.org/10.1016/j.conbuildmat.2013.09.035.
  • 7. Munir MJ, Kazmi SMS, Wu Y, Patnaikuni I, Zhou Y, Xing F. Stress strain performance of steel spiral confined recycled aggregate concrete. Cement Concr Compos. 2020;108:103535. https://doi.org/10.1016/j.cemconcomp.2020.103535.
  • 8. Shams A, Stark A, Hoogen F, Hegger J, Schneider H. Innovative sandwich structures made of high performance concrete and foamed polyurethane. Compos Struct. 2015;121:271–9. https://doi.org/10.1016/j.compstruct.2014.11.026.
  • 9. Al-Haydari IS, Masood GG, Mohamad SA, Khudhur HM. Stress–strain behavior of sustainable polyester concrete with different types of recycled aggregate. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.01.591.
  • 10. Fang H, Su Z, Li X, Wang F, Fu Y. Interfacial bond performance between self-expansion polymer and concrete. Constr Build Mater. 2021;270:121459. https://doi.org/10.1016/j.conbuildmat.2020.121459.
  • 11. Fan K, Li D, Damrongwiriyanupap N, Li L. Compressive stress-strain relationship for fly ash concrete under thermal steady state. Cement Concr Compos. 2019;104:103371. https://doi.org/10.1016/j.cemconcomp.2019.103371.
  • 12. Li M, Du M, Wang F, Xue B, Zhang C, Fang H. Study on the mechanical properties of polyurethane (PU) grouting material of different geometric sizes under uniaxial compression. Constr Build Mater. 2020;259:119797. https://doi.org/10.1016/j.conbuildmat.2020.119797.
  • 13. Weißenborn O, Ebert C, Gude M. Modelling of the strain rate dependent deformation behaviour of rigid polyurethane foams. Polym Test. 2016;54:145–9. https:// doi. org/ 10. 1016/j. Polymertesting.2016.07.007.
  • 14. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH. Rate dependent tensile behavior of polyurethane under varying strain rates. Constr Build Mater. 2020;254:119203. https://doi.org/10.1016/j.conbuildmat.2020.119203.
  • 15. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH. Behaviour of concrete specimens retrofitted with bio-based polyurethane coatings under dynamic loads. Constr Build Mater. 2021;270:121860. https://doi.org/10.1016/j.conbuildmat.2020.121860.
  • 16. Sassani A, Arabzadeh A, Ceylan H, Kim S, Gopalakrishnan K, Taylor PC, et al. Polyurethane-carbon microfiber composite coating for electrical heating of concrete pavement surfaces. Heliyon. 2019;5(8):2359. https://doi.org/10.1016/j.heliyon.2019.e02359.
  • 17. Sadowski Ł, Hoła J, Żak A, Chowaniec A. Microstructural and mechanical assessment of the causes of failure of floors made of polyurethane-cement composites. Compos Struct. 2020;238:112002. https:// doi. org/ 10. 1016/j. comps truct. 2020.112002.
  • 18. Shigang A, Liqun T, Yiqi M, Yongmao P, Yiping L, Daining F. Effect of aggregate distribution and shape on failure behavior of polyurethane polymer concrete under tension. Comput Mater Sci. 2013;67(20):133–9. https://doi.org/10.1016/j.commatsci.2012.08.029.
  • 19. Tang J, Liu J, Yu C, Wang R. Influence of cationic polyurethane on mechanical properties of cement based materials and its hydration mechanism. Constr Build Mater. 2017;137:494–504. https://doi.org/10.1016/j.conbuildmat.2016.12.162.
  • 20. Huang H, Pang H, Huang J, Zhao H, Liao B. Synthesis and characterization of ground glass fiber reinforced polyurethane-based polymer concrete as a cementitious runway repair material. Constr Build Mater. 2020;242:117221. https://doi.org/10.1016/j.conbuildmat.2019.117221.
  • 21. Lee KS, Choi J, Kim S, Lee B, Hwang J, Lee BY. Damping and mechanical properties of composite composed of polyurethane matrix and preplaced aggregates. Constr Build Mater. 2017;145:68–75. https://doi.org/10.1016/j.conbuildmat.2017.03.233.
  • 22. Wu M, Hu X, Hu Z, Zhao Y, Cheng W, Lu W. Two-component polyurethane healing system: Effect of different accelerators and capsules on the healing efficiency of dynamic concrete cracks. Constr Build Mater. 2019;227:116700. https://doi.org/10.1016/j.conbuildmat.2019.116700.
  • 23. Unnikrishna Pillai U, Anand KB. Performance evaluation of polyurethane-nano silica modified cement mortar. Mater Today: Proc. 2021. https://doi.org/10.1016/j.matpr.2020.10.314.
  • 24. Morozov IA. Nanoindentation of polyurethane with phase-separated fibrillar structure. Polym Test. 2021;94:107038. https://doi.org/10.1016/j.polymertesting.2020.107038.
  • 25. Lubczak R, Szczęch D, Broda D, Wojnarowska-Nowak R, Kus-Liśkiewicz M, Dębska B, et al. Polyetherols and polyurethane foams from starch. Polym Test. 2021;93:106884. https://doi.org/10.1016/j.polymertesting.2020.106884.
  • 26. Manigandan S, Praveenkumar TR, Al-Mohaimeed AM, Brindhadevi K, Pugazhendhi A. Characterization of polyurethane coating on high performance concrete reinforced with chemically treated Ananas erectifolius fiber. Prog Org Coat. 2021;150:105977. https:// doi. org/ 10. 1016/j. porgc oat. 2020.105977.
  • 27. Das A, Mahanwar P. A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res. 2020;3(3):93–101. https://doi.org/10.1016/j.aiepr.2020.07.002.
  • 28. Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Mater Sci Eng, C. 2021;118:111228. https://doi.org/10.1016/j.msec.2020.111228.
  • 29. Wan Z, Bian X, Li S, Chen Y, Cui Y. Remediation of mud pumping in ballastless high-speed railway using polyurethane chemical injection. Constr Build Mater. 2020;259:120401. https://doi.org/10.1016/j.conbuildmat.2020.120401.
  • 30. Liu X, Wu T, Liu Y. Stress-strain relationship for plain and fibre-reinforced lightweight aggregate concrete. Constr Build Mater. 2019;225:256–72. https://doi.org/10.1016/j.conbuildmat.2019.07.135.
  • 31. Liu J, Teng Y, Zhang Y, Wang X, Chen YF. Axial stress-strain behavior of high-strength concrete confined by circular thin-walled steel tubes. Constr Build Mater. 2018;177:366–77. https://doi.org/10.1016/j.conbuildmat.2018.05.021.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80bcd40d-f11c-42d4-ac44-cc653af2e0f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.