
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 13−18 (2019)

 13

On regularization properties of artificial datasets
for deep learning

K. ANTCZAK

karol.antczak@wat.edu.pl

Military University of Technology, Faculty of Cybernetics
Institute of Computer and Information Systems

Kaliskiego Str. 2, 00-908 Warsaw, Poland

The paper discusses regularization properties of artificial data for deep learning. Artificial datasets allow to
train neural networks in the case of a real data shortage. It is demonstrated that the artificial data generation
process, described as injecting noise to high-level features, bears several similarities to existing regularization
methods for deep neural networks. One can treat this property of artificial data as a kind of “deep”
regularization. It is thus possible to regularize hidden layers of the network by generating the training data in
a certain way.

Keywords: deep learning, regularization, artificial data.

DOI: 10.5604/01.3001.0013.6599

1. Generalization gap

A distinguishing feature of machine learning
models is an ability to work on previously
unseen data. Such ability, known as
generalization [1], can be formally expressed by
means of generalization gap, defined as
a discrepancy between mean losses for the
training dataset 𝑋𝑡𝑟𝑎𝑖𝑛 and the whole dataset 𝑋
for some model 𝜃:

𝐺(𝜃,𝑋𝑡𝑟𝑎𝑖𝑛,𝑋) = 𝐿(𝜃,𝑋) − 𝐿(𝜃,𝑋𝑡𝑟𝑎𝑖𝑛) (1)

Generalization plays a crucial role in

machine learning since, in real-life applications,
training dataset is a small subset of all possible
examples from a problem domain, i.e.
𝑋𝑡𝑟𝑎𝑖𝑛 ⊆ 𝑋. In the case of a labeled dataset, it is
possible to create a trivial model that has zero
error on the training dataset, simply by assigning
proper label to known sample. Despite this,
it will not be very useful. Since:

𝐿(𝜃,𝑋) =
1
𝑛
�𝐿(𝜃, 𝑥𝑖)
𝑛

𝑖=0

,

𝑋 = {𝑥0 … 𝑥𝑛}

(2)

The generalization gap will be:

𝐺(𝜃,𝑋𝑡𝑟𝑎𝑖𝑛 ,𝑋) =
1
𝑛
�𝐿(𝜃, 𝑥𝑖)
𝑛

𝑖=0

−
1
𝑚
�𝐿�𝜃,𝑥𝑡𝑟𝑎𝑖𝑛𝑗� =
𝑚

𝑗=0

=
1
𝑛
�𝐿(𝜃, 𝑥𝑖)
𝑛

𝑖=0

(3)

In the general case, there is no upper bound
for generalization gap of such model. Thanks to
the “no free lunch” theorem [2] we know that
similar weakness is a common property of all
machine learning models: It is not possible to
create a general model that will have minimal
generalization gap for all types of problems.
On the other hand, deep learning use number of
assumptions regarding problem space and
techniques that allow them to perform
exceedingly well in many real-life scenarios.

Note that it is usually not possible to
calculate an exact value of the generalization gap
simply because the whole dataset 𝑋 is not
known. Instead, it be can estimated with
the following formula:

𝐺(𝜃,𝑋𝑡𝑟𝑎𝑖𝑛 ,𝑋) ≈ 𝐿(𝜃,𝑋𝑣𝑎𝑙) − 𝐿(𝜃,𝑋𝑡𝑟𝑎𝑖𝑛) (4)

where 𝑋𝑣𝑎𝑙 is called the validation set.

Since 𝑋𝑣𝑎𝑙 ⊆ 𝑋, it is easy to see that such
estimator is a consistent one.

2. Regularization in deep learning

A number of techniques exist specifically
for minimization of generalization gap. They are
known as regularization methods. In deep
learning, many regularization methods are based

Karol Antczak, On regularization properties of artificial datasets for deep learning

 14

on the concept of model capacity1 [3]. It is
a function of the model structure that can be
interpreted as a measure of complexity of
problems that are learnable by the model.
A model with sufficiently large capacity is prone
to memorize all training samples, resulting in
a trivial model shown in the previous section.
It is known as an overfitting problem.
On the other hand, a model with small capacity
will not be able to learn the problem with certain
complexity, causing an underfitting. Therefore,
regularization in deep learning is motivated by
searching for the best possible (in terms of
generalization gap) model capacity.

A de facto standard of deep models training
algorithms is a stochastic gradient descent
(SGD) and its variations. It itself is an extension
of a gradient descent method that minimizes loss
function by iteratively following the direction (in
a model parameter space) that reduces the loss
the fastest, which is an opposite of the loss
gradient:

𝜃 ← 𝜃 − 𝜂∇𝜃𝐿(𝑋,𝜃) (5)

𝜃 is a vector of model parameters (network
weights and biases), 𝜂 is a learning rate
hyperparameter, ∇𝜃𝐿 is a gradient of the loss
function in the model parameter space.
The stochastic extension of SGD is that the
value of gradient is estimated by calculating
mean gradient 𝑔 for a minibatch of examples,
sampled uniformly from the training set:

𝜃 ← 𝜃 − 𝜂𝑔(𝑋,𝜃)

𝑔 =
1
𝑚′ ∇𝜃�𝐿�𝜃, 𝑥𝑗�

𝑚′

𝑗=0

,

{𝑥0 … 𝑥𝑚′} = 𝑋𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ ∈ 𝑋𝑡𝑟𝑎𝑖𝑛

(6)

(7)

(8)

A number of deep learning regularization

methods work through modification of
the gradient descent by providing an additional
component to the loss function [4]:

𝐿�(𝜃,𝑋) = 𝐿(𝜃,𝑋) + 𝛼𝑅(𝜃) (9)

1 Measuring the capacity of the model is a difficult
problem itself. A number of measures were proposed;
the two commonly used in deep learning are Vapnik-
-Chervonenkis (VC) dimension [17] and Rademacher
complexity [16]. In most cases, the exact values of
these metrics are not known and only upper and
lower bounds are provided for specific types of neural
networks.

𝛼 is the regularization hyperparameter and 𝑅(𝜃)
is the regularization function. Following
function:

𝑅(𝜃) = ‖𝜃‖1 = �|𝜃𝑖|
𝑛

𝑖=0

 (10)

is known as 𝐿1 regularization. Another used
function is:

𝑅(𝜃) = ‖𝜃‖22 = �𝜃𝑖2
𝑛

𝑖=0

 (11)

This one is known as 𝐿2 (or Tikhonov)
regularization. Despite the formulaic similarity,
𝐿1 and 𝐿2 regularizations work in a different
way. Both of them introduce a penalty for
models with large weights, with weight size
measured using 𝐿1 and 𝐿2 norms,
respectively. 𝐿1 regularization causes an
occurrence of an additional component in the
loss gradient, equal to 𝛼sign(𝜃). For
a sufficiently large 𝛼, it will move weights closer
to 0. 𝐿2 regularization can be viewed as scaling
the model parameters along the axes defined by
eigenvectors of loss function Hessian. Model
regularized this way will have smaller values for
weights associated with input features having
small covariance with loss function. Compared
to 𝐿2, 𝐿1 results in a more sparse parameters, i.e.
having more zeroes. Since this is usually not the
desired behavior of network weights, 𝐿2 is more
commonly used in deep learning practice.

𝐿1 and 𝐿2 regularizations were used long
before the “deep learning” term was coined.
With the advent of deep learning, specific
regularization techniques were developed that
take into consideration a structure of neural
models. Two modern examples are Dropout and
DropConnect methods.

Let us first introduce required conventions.
Let 𝒚(𝑙) denote the output vector of the layer 𝑙 of
the neural network. A function of the 𝑖-th
neuron in the (𝑙 + 1)-th layer with the weight
vector 𝒘𝑖

(𝑙+1), the bias value 𝑏𝑖
(𝑙+1) and the

activation function 𝑓 is given by the following
formula:

𝑦𝑖

(𝑙+1) = 𝑓(𝒘𝑖
(𝑙+1)𝒚(𝑙) + 𝑏𝑖

(𝑙+1)) (12)

A main idea of Dropout [5] is to randomly

turn off neurons, along with their outputs, during
the training. The modified neuron function will
look as follows:

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 13−18 (2019)

 15

𝑦𝑖
(𝑙+1) = 𝑓 �𝒘𝑖

(𝑙+1)𝒚�(𝑙) + 𝑏𝑖
(𝑙+1)�

𝒚�(𝑙) = 𝒓(𝑙) ∗ 𝒚(𝑙)

 𝑟𝑗
(𝑙) ~ Bernoulli(𝑝)

(13)

(14)

(15)

The probability 𝑝 of the neuron dropout is
a hyperparameter that should be specified before
the network training. The ∗ symbol denotes the
Hadamard product of two vectors. Values of 𝑟𝑗

(𝑙)
are sampled during each epoch. After the
training, all neurons are used again, therefore it
is a common practice to scale the weight vector
by a factor of 1

𝑝
 in the trained network.

DropConnect [6] is a newer technique,
similar to Dropout in that it drops structural
components of the network during the training.
In this case, the dropped components are weights
rather than neurons. In the vector notation it can
be written as:

𝒚(𝑙+1) = 𝑓((𝑹(𝑙+1) ∗ 𝑾(𝑙+1))𝒚(𝑙))
𝑟𝑖𝑗 ~ Bernoulli(𝑝)

(16)
(17)

𝑾 denotes the weight matrix and 𝑹 is
the random matrix with elements 𝑟𝑖𝑗. Note that
for the sake of simplicity the bias vector is
included in 𝑾.

DropConnect can be viewed as
a generalization of Dropout. Assuming that the
bias component is included in the 𝑾, one can
rewrite the Dropout-regularized neuron function
in the as a special case of (16), with 𝑹 being
a diagonal matrix:

𝒚(𝑙+1) = 𝑓((𝑹(𝑙+1) ∗ 𝑾(𝑙+1))𝒚(𝑙)

𝑹(𝑙+1) = �
𝑟1(𝑙+1) … 0
⋮ ⋱ ⋮
0 … 𝑟𝑚(𝑙+1)

�

 𝑟𝑗
(𝑙+1) ~ Bernoulli(𝑝)

(18)

(19)

(20)

Additionally, 𝑟𝑚 component associated with

the bias input will be a constant equal to 1.
Both Dropout and DropConnect work by

intentionally damaging the structure of neural
network, albeit on a different scale. Their
regularization properties can be explained by
a similarity to the bagging procedure. Bagging
(Bootstrap Aggregating) [7] is a meta-algorithm
that reduces variance of model ensemble by
producing multiple training sets from a single
one by sampling uniformly with replacing.
A separate model is then trained for each
training set and model ensemble is created, by

averaging outputs or voting. Since in Dropout
and DropConnect random variables are sampled
epoch-wise, it can be viewed as a process of
selecting and training a random subnetwork
from a larger network during each epoch. For
a network consisting of 𝑛 units, it is possible to
sample from 2𝑛 possible “thinned” networks.
Note, however, that it differs from the classical
bagging procedure in that models are not
independent from each other and the weights are
shared between them. Dropping methods have
proven to be effective in practical applications.
Combined with their simplicity, it resulted in
one of the most popular regularizers of deep
neural networks, with many benchmark-winning
models using one of them. Nonetheless,
Dropout/DropConnect regularizers are not
without flaws. Since these methods remove
processing units from the structure, they both
reduce network capacity. It was shown that
the capacity of such regularized networks
(measured by means of Rademacher complexity)
is a linear function of the probability 𝑝.
As a consequence, the network regularized with
Dropout or DropConnect require longer training
compared to non-regularized network for the
same task.

3. Artificial data generation process

Small size of the training dataset is a common
reason that prevents deep models from
generalization of the acquired knowledge. Two
main factors are involved here. The first one is
the fact that the smaller dataset has distribution
more deviated from the true distribution of
the problem space. The second one is that
the smaller dataset, the less capacity it requires,
making a model prone to overfitting. Therefore,
augmentation of the dataset can be used as
a technique for reducing the generalization gap.
Formally, data augmentation scheme [8] is
defined as a model for the set 𝑋𝑎𝑢𝑔 created from
the set 𝑋𝑜𝑏𝑠 that satisfies the following
condition:

� 𝑝(𝑋𝑎𝑢𝑔|𝑦)𝜇(𝑑𝑋𝑎𝑢𝑔)
ℳ�𝑋𝑎𝑢𝑔�=𝑋𝑜𝑏𝑠

= 𝑝(𝑋𝑜𝑏𝑠|𝑦) (21)

ℳ is a mapping of augmented samples to

their originals ℳ:𝑋𝑎𝑢𝑔 → 𝑋𝑜𝑏𝑠, 𝑦 is the output
class and 𝜇 is the reference measure on 𝑋𝑎𝑢𝑔.
In accordance with the above definition,
the marginal distribution of augmented
data 𝑝(𝑋𝑎𝑢𝑔|𝑦) must be the same as the
distribution of the original data 𝑝(𝑋𝑜𝑏𝑠|𝑦).

Karol Antczak, On regularization properties of artificial datasets for deep learning

 16

An internal structure of the training data

plays an immense role in deep learning.
An important, yet not fully understood,
phenomenon of deep learning is an ability to
learn hierarchical representations of the data.
It means that deep networks “learn” complicated
concepts by decomposing them into simpler
ones, which are decomposed into even simpler
ones etc. In case of neural networks, the deeper
layer is, the more complicated concepts it can
learn, basing on the previous layer. Such
phenomenon is mostly observed in the
convolutional networks for image processing,
due to the fact that visual features are typically
easily interpretable [9]. It is also a basis for
layer-wise training of specific architectures like
stacked autoencoders [10] and deep belief
networks [11].

The hierarchical data decomposition is
particularly interesting in the context of data
augmentation process. This is due to the fact that
artificial data can be generated not only from
the input representation of the original data, but
also from certain features of the data, assuming
that there is a known transformation of
the features to the input vector. It can be written
as:

𝒙� = 𝑑(𝒛�) (22)

where 𝒛� is a vector of features of data and 𝑑 is
a function that produces input samples from
them. Of course, to be used for the training,
distribution of the samples should follow
the data augmentation scheme. The hidden
layers of the deep network learn the reverse

mapping 𝑑−1(𝑥�). One can, therefore, affect
the training process of hidden layers by
generating artificial input data from artificial
features using the above formula. In particular,
one can influence the regularization of these
layer, as explained in the next section.

4. Regularization with artificial data

Almost every type of data augmentation scheme
utilizes some kind of randomness. Let us
formalize this randomness by representing it as
a vector 𝑟 of random values, called noise vector.
Two common types of noise are an additive one:

𝒙� = 𝒓 + 𝒙 (23)

and a multiplicative one:

𝒙� = 𝒓 ∗ 𝒙 (24)

Examples of both noise injection types are

shown in the Figure 1. Let us now consider
the case of additive noise injection. According to
theoretical results of Bishop [12], adding noise
to the input features is an equivalent to
Tikhonov regularization. This means that
training with such noise can be viewed as
a regularized training, with the loss function
equivalent to (11) and the regularization
parameter equal to the noise variance. An exact
form of the regularization component 𝑅(𝜃)
depends on the loss function, though. Solutions
for two common losses, namely mean squared
error and binary crossentropy, were provided
in [12].

Fig. 1. Examples of additive and multiplicative noising for image and categorical data

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 13−18 (2019)

 17

In Bishop’s paper, the noise was applied to
input features only. The noise, however, can be
injected not only directly to the input vector 𝒙,
but also to high-level features, assuming that we
know the function 𝑑 that transform them into
inputs, as described by (22). Therefore:

𝒙� = 𝑑(𝒛�) (25)

𝒛� = 𝒓 + 𝒛 (26)

A special case of the above will be

the function 𝑑 that produces artificial cases from
the output labels, i.e. 𝒛 = 𝒚. We can therefore
noise the output labels – this is an approach
known as label smoothing, which also exhibits,
albeit different, regularization properties [13].
Input noising and label smoothing are therefore
two edge cases of the additive noise, applied to
input and output features, respectively.
A number of in-between cases of adding noise to
the “hidden” features will result in Tikhonov-
-like regularization of the inner layers of deep
network.

Considering the case of multiplicative
noise, it is easy to notice similarities between it
and Dropout method. More specifically, Dropout
added to the input layer can be viewed as
a special case of multiplicative noise, where the
random component 𝒓 follows the Bernoulli
distribution. Since Dropout is a special case of
DropConnect, the multiplicative noise can be
represented by the diagonal matrix 𝑹, but with
elements following any distribution that keeps
up the data augmentation scheme. On the other
hand, adding Dropout/DropConnect to inner
layers can be interpreted as a special case of
noise injection. In this case, however, the noise
is not injected directly into input features, but
into the high-level features of the data:

𝒙� = 𝑑(𝒛�) (27)

𝒛� = 𝒓 ∗ 𝒛 (28)

As a consequence of the above formula, by

knowing the transformation 𝑑 that produces
input data from high-level features 𝒛, it is
possible to inject multiplicative noise into them,
resulting in data with regularization properties
analogous to that of Dropout applied to a single
hidden layer.

5. Summary

In this paper, we have presented analogies
between the regularization methods for deep
learning and data augmentation process

interpreted as a noise injection. It was shown
that, by generating the input data from high-
level features, it is possible to regularize hidden
layers of the network by exploiting the ability of
deep networks to learn hierarchical
representations.

The analysis given here is theoretical, but
there already are experimental results that
partially confirm these observations. A case of
convolutional neural networks for stenosis
detection [14] have shown that pretraining
the network on artificial dataset results in
reduction of test error rate on real dataset,
and thus, smaller generalization gap.
An improvement of test accuracy was also
observed in the case of recurrent neural
networks for ECG filtering, pretrained with
synthetic signals [15]. A more definitive
confirmation should be expected by the
comparison of models trained for the same task
with datasets created by injecting noise either
into input features or high-level features of
the real data.

6. Bibliography

[1] Goodfellow I., Bengio Y., Aaron C.,

“Machine Learning Basics”, in: Deep
Learning, MIT Press, 2016.

[2] Wolpert D.H., “The Lack of a Priori
Distinctions Between Learning
Algorithms”, Neural Computation, Vol. 8,
No. 7, 1341–1390 (1996).

[3] Zhang C., Bengio S., Hardt M., Recht B.
and Vinyals O., “Understanding deep
learning requires rethinking
generalization”, arXiv: 1611.03530, 2016.

[4] Ng A.Y., “Feature selection, L 1 vs. L 2
regularization, and rotational invariance”,
in: Proceedings of the twenty-first
international conference on Machine
learning, ACM, 2004.

[5] Srivastava N., Hinton G., Krizhevsky A.,
Sutskever I., Salakhutdinov R., “Dropout:
a simple way to prevent neural networks
from overfitting”, Journal of Machine
Learning Research, Vol. 15, No. 1,
1929–1958 (2014).

[6] Li W., and et. al, “Regularization of neural
networks using DropConnect”, in:
Proceedings of the 30th International
Conference on Machine Learning, PMLR
28(3):1058–1066, 2013.

[7] Breiman L., Bagging Predictors, University
of California, California, 1994.

[8] van Dyk D.A. and Meng X.-L., “The Art of
Data Augmentation”, Journal of

Karol Antczak, On regularization properties of artificial datasets for deep learning

 18

Computational and Graphical Statistics,
Vol. 10, No. 1, 1–50 (2001).

[9] Lee H., Grosse R., Raganath R. and Ng
A.Y., “Convolutional deep belief networks
for scalable unsupervised learning of
hierarchical representations”, in:
Proceedings of the 26th Annual
International Conference on Machine
Learning, Montreal, 2009.

[10] Vincent P., Larochelle H., Lajoie I.,
Bengio Y. and Manzagol P.-A., “Stacked
denoising autoencoders: Learning useful
representations in a deep network with
a local denoising criterion”, Journal of
Machine Learning Research, Vol. 11,
3371–3408 (2010).

[11] Lee H., Largman Y., Pham P. and Ng A.Y.,
“Unsupervised feature learning for audio
classification using convolutional deep
belief networks”, in: NIPS Proceedings,
2009.

[12] Bishop C.M., “Training with Noise is
Equivalent to Tikhonov Regularization”,
Neural Computation, No. 1, 108–116
(1995).

[13] Müller R., Kornblith S. and Hinton G.,
“When Does Label Smoothing Help?”,
arXiv: 1906.02629 (2019).

[14] Antczak K., Liberadzki Ł., “Stenosis
Detection with Deep Convolutional Neural
Networks”, MATEC Web of Conferences,
Vol. 210 (2018).

[15] Antczak K., “Deep Recurrent Neural
Networks for ECG Signal Denoising”,
arXiv: 1807.11551 (2018).

[16] Bartlett P.L., Mendelson S., “Rademacher
and Gaussian Complexities: Risk Bounds
and Structural Results”, Journal of Machine
Learning Research, No. 3, 463–482 (2002).

[17] Vapnik V.N., Chervonenkis A.Y.,
“On the Uniform Convergence of Relative
Frequencies of Events to Their
Probabilities”, Theory of Probability and Its
Application, Vol. 16, No. 2, 254–280
(1971).

O własnościach regularyzacyjnych danych sztucznych w uczeniu głębokim

K. ANTCZAK

W artykule omówiono własności regularyzacyjne sztucznych danych używanych w uczeniu głębokim. Dane te
pozwalają na uczenie sieci neuronowych w sytuacji niedoboru danych rzeczywistych. Okazuje się, że proces
generacji danych sztucznych, opisany jako zaszumianie wysokopoziomowych cech, wykazuje wiele
podobieństw do istniejących metod regularyzacyjnych dla głębokich sieci neuronowych. Dzięki temu możliwa
jest regularyzacja warstw ukrytych sieci poprzez generowanie sztucznych danych uczących w odpowiedni
sposób.

Słowa kluczowe: uczenie głębokie, regularyzacja, dane sztuczne.

