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The paper discusses regularization properties of artificial data for deep learning. Artificial datasets allow to 
train neural networks in the case of a real data shortage. It is demonstrated that the artificial data generation 
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1. Generalization gap 
 
A distinguishing feature of machine learning 
models is an ability to work on previously 
unseen data. Such ability, known as 
generalization [1], can be formally expressed by 
means of generalization gap, defined as  
a discrepancy between mean losses for the 
training dataset 𝑋𝑡𝑟𝑎𝑖𝑛 and the whole dataset 𝑋 
for some model 𝜃: 
 
𝐺(𝜃, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋) = 𝐿(𝜃, 𝑋) − 𝐿(𝜃, 𝑋𝑡𝑟𝑎𝑖𝑛) (1) 

 
Generalization plays a crucial role in 

machine learning since, in real-life applications, 
training dataset is a small subset of all possible 
examples from a problem domain, i.e. 
𝑋𝑡𝑟𝑎𝑖𝑛 ⊆ 𝑋. In the case of a labeled dataset, it is 
possible to create a trivial model that has zero 
error on the training dataset, simply by assigning 
proper label to known sample. Despite this,  
it will not be very useful. Since: 
 

𝐿(𝜃, 𝑋) =
1
𝑛
�𝐿(𝜃, 𝑥𝑖)
𝑛

𝑖=0

,

𝑋 = {𝑥0 …𝑥𝑛} 
 

(2)  

The generalization gap will be: 
 

𝐺(𝜃, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋) =
1
𝑛
�𝐿(𝜃, 𝑥𝑖)
𝑛

𝑖=0

−
1
𝑚
�𝐿�𝜃, 𝑥𝑡𝑟𝑎𝑖𝑛𝑗� =
𝑚

𝑗=0

=
1
𝑛
�𝐿(𝜃, 𝑥𝑖)
𝑛

𝑖=0

 
(3)  

In the general case, there is no upper bound 
for generalization gap of such model. Thanks to 
the “no free lunch” theorem [2] we know that 
similar weakness is a common property of all 
machine learning models: It is not possible to 
create a general model that will have minimal 
generalization gap for all types of problems.  
On the other hand, deep learning use number of 
assumptions regarding problem space and 
techniques that allow them to perform 
exceedingly well in many real-life scenarios.  

Note that it is usually not possible to 
calculate an exact value of the generalization gap 
simply because the whole dataset 𝑋 is not 
known. Instead, it be can estimated with  
the following formula:  

 
𝐺(𝜃, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋) ≈ 𝐿(𝜃, 𝑋𝑣𝑎𝑙) − 𝐿(𝜃, 𝑋𝑡𝑟𝑎𝑖𝑛) (4)  

 
where 𝑋𝑣𝑎𝑙 is called the validation set. 

Since 𝑋𝑣𝑎𝑙 ⊆ 𝑋, it is easy to see that such 
estimator is a consistent one. 

 
2. Regularization in deep learning 
 

A number of techniques exist specifically 
for minimization of generalization gap. They are 
known as regularization methods. In deep 
learning, many regularization methods are based 

 



Karol Antczak, On regularization properties of artificial datasets for deep learning 

 14 

on the concept of model capacity1 [3]. It is  
a function of the model structure that can be 
interpreted as a measure of complexity of 
problems that are learnable by the model.  
A model with sufficiently large capacity is prone 
to memorize all training samples, resulting in  
a trivial model shown in the previous section.  
It is known as an overfitting problem.  
On the other hand, a model with small capacity 
will not be able to learn the problem with certain 
complexity, causing an underfitting. Therefore, 
regularization in deep learning is motivated by 
searching for the best possible (in terms of 
generalization gap) model capacity. 

A de facto standard of deep models training 
algorithms is a stochastic gradient descent 
(SGD) and its variations. It itself is an extension 
of a gradient descent method that minimizes loss 
function by iteratively following the direction (in 
a model parameter space) that reduces the loss 
the fastest, which is an opposite of the loss 
gradient: 
 

𝜃 ← 𝜃 − 𝜂∇𝜃𝐿(𝑋, 𝜃) (5)  

 
𝜃 is a vector of model parameters (network 
weights and biases), 𝜂 is a learning rate 
hyperparameter, ∇𝜃𝐿 is a gradient of the loss 
function in the model parameter space.  
The stochastic extension of SGD is that the 
value of gradient is estimated by calculating 
mean gradient 𝑔 for a minibatch of examples, 
sampled uniformly from the training set: 
 

𝜃 ← 𝜃 − 𝜂𝑔(𝑋, 𝜃) 

𝑔 =
1
𝑚′ ∇𝜃�𝐿�𝜃, 𝑥𝑗�

𝑚′

𝑗=0

,   

{𝑥0 …𝑥𝑚′} = 𝑋𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ ∈ 𝑋𝑡𝑟𝑎𝑖𝑛 

(6)  

(7)  

(8)  

 
A number of deep learning regularization 

methods work through modification of  
the gradient descent by providing an additional 
component to the loss function [4]: 

 
𝐿�(𝜃, 𝑋) = 𝐿(𝜃, 𝑋) + 𝛼𝑅(𝜃) (9)  

                                                 
1 Measuring the capacity of the model is a difficult 
problem itself. A number of measures were proposed; 
the two commonly used in deep learning are Vapnik- 
-Chervonenkis (VC) dimension [17] and Rademacher 
complexity [16]. In most cases, the exact values of 
these metrics are not known and only upper and 
lower bounds are provided for specific types of neural 
networks. 

𝛼 is the regularization hyperparameter and 𝑅(𝜃) 
is the regularization function. Following 
function:  

 

𝑅(𝜃) = ‖𝜃‖1 = �|𝜃𝑖|
𝑛

𝑖=0

 (10)  

 
is known as 𝐿1 regularization. Another used 
function is: 
 

𝑅(𝜃) = ‖𝜃‖22 = �𝜃𝑖2
𝑛

𝑖=0

 (11)  

 
This one is known as 𝐿2 (or Tikhonov) 
regularization. Despite the formulaic similarity, 
𝐿1 and 𝐿2 regularizations work in a different 
way. Both of them introduce a penalty for 
models with large weights, with weight size 
measured using 𝐿1 and 𝐿2 norms, 
respectively.  𝐿1 regularization causes an 
occurrence of an additional component in the 
loss gradient, equal to 𝛼sign(𝜃). For  
a sufficiently large 𝛼, it will move weights closer 
to 0.  𝐿2 regularization can be viewed as scaling 
the model parameters along the axes defined by 
eigenvectors of loss function Hessian. Model 
regularized this way will have smaller values for 
weights associated with input features having 
small covariance with loss function. Compared 
to 𝐿2, 𝐿1 results in a more sparse parameters, i.e. 
having more zeroes.  Since this is usually not the 
desired behavior of network weights, 𝐿2 is more 
commonly used in deep learning practice.  

𝐿1 and 𝐿2 regularizations were used long 
before the “deep learning” term was coined. 
With the advent of deep learning, specific 
regularization techniques were developed that 
take into consideration a structure of neural 
models. Two modern examples are Dropout and 
DropConnect methods.  

Let us first introduce required conventions. 
Let 𝒚(𝑙) denote the output vector of the layer 𝑙 of 
the neural network.  A function of the 𝑖-th 
neuron in the (𝑙 + 1)-th layer with the weight 
vector 𝒘𝑖

(𝑙+1), the bias value 𝑏𝑖
(𝑙+1) and the 

activation function 𝑓 is given by the following 
formula: 

 
𝑦𝑖

(𝑙+1) = 𝑓(𝒘𝑖
(𝑙+1)𝒚(𝑙) +  𝑏𝑖

(𝑙+1)) (12)  
 
A main idea of Dropout [5] is to randomly 

turn off neurons, along with their outputs, during 
the training. The modified neuron function will 
look as follows: 
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𝑦𝑖
(𝑙+1) = 𝑓 �𝒘𝑖

(𝑙+1)𝒚�(𝑙) +  𝑏𝑖
(𝑙+1)�

𝒚�(𝑙) = 𝒓(𝑙) ∗ 𝒚(𝑙)

  𝑟𝑗
(𝑙) ~ Bernoulli(𝑝)

 

(13) 

(14) 

(15) 

 
The probability 𝑝 of the neuron dropout is  
a hyperparameter that should be specified before 
the network training. The ∗ symbol denotes the 
Hadamard product of two vectors. Values of 𝑟𝑗

(𝑙) 
are sampled during each epoch. After the 
training, all neurons are used again, therefore it 
is a common practice to scale the weight vector 
by a factor of 1

𝑝
 in the trained network.   

DropConnect [6] is a newer technique, 
similar to Dropout in that it drops structural 
components of the network during the training. 
In this case, the dropped components are weights 
rather than neurons. In the vector notation it can 
be written as: 

 
𝒚(𝑙+1) = 𝑓((𝑹(𝑙+1) ∗ 𝑾(𝑙+1))𝒚(𝑙))
𝑟𝑖𝑗 ~ Bernoulli(𝑝)  

(16) 
(17) 

 
𝑾 denotes the weight matrix and 𝑹 is  
the random matrix with elements 𝑟𝑖𝑗. Note that 
for the sake of simplicity the bias vector is 
included in 𝑾.  

DropConnect can be viewed as  
a generalization of Dropout. Assuming that the 
bias component is included in the 𝑾, one can 
rewrite the Dropout-regularized neuron function 
in the as a special case of (16), with 𝑹 being  
a diagonal matrix: 
 

𝒚(𝑙+1) = 𝑓((𝑹(𝑙+1) ∗ 𝑾(𝑙+1))𝒚(𝑙)

𝑹(𝑙+1) = �
𝑟1(𝑙+1) … 0
⋮ ⋱ ⋮
0 … 𝑟𝑚(𝑙+1)

�

  𝑟𝑗
(𝑙+1) ~ Bernoulli(𝑝)

 

 

(18) 

(19) 

(20) 

 
Additionally, 𝑟𝑚 component associated with 

the bias input will be a constant equal to 1.  
Both Dropout and DropConnect work by 

intentionally damaging the structure of neural 
network, albeit on a different scale. Their 
regularization properties can be explained by  
a similarity to the bagging procedure. Bagging 
(Bootstrap Aggregating) [7] is a meta-algorithm 
that reduces variance of model ensemble by 
producing multiple training sets from a single 
one by sampling uniformly with replacing.  
A separate model is then trained for each 
training set and model ensemble is created, by 

averaging outputs or voting. Since in Dropout 
and DropConnect random variables are sampled 
epoch-wise, it can be viewed as a process of 
selecting and training a random subnetwork 
from a larger network during each epoch. For  
a network consisting of 𝑛 units, it is possible to 
sample from 2𝑛 possible “thinned” networks. 
Note, however, that it differs from the classical 
bagging procedure in that models are not 
independent from each other and the weights are 
shared between them. Dropping methods have 
proven to be effective in practical applications. 
Combined with their simplicity, it resulted in 
one of the most popular regularizers of deep 
neural networks, with many benchmark-winning 
models using one of them. Nonetheless, 
Dropout/DropConnect regularizers are not 
without flaws. Since these methods remove 
processing units from the structure, they both 
reduce network capacity. It was shown that  
the capacity of such regularized networks 
(measured by means of Rademacher complexity) 
is a linear function of the probability 𝑝.  
As a consequence, the network regularized with 
Dropout or DropConnect require longer training 
compared to non-regularized network for the 
same task. 

 
3. Artificial data generation process 

 
Small size of the training dataset is a common 
reason that prevents deep models from 
generalization of the acquired knowledge. Two 
main factors are involved here. The first one is 
the fact that the smaller dataset has distribution 
more deviated from the true distribution of  
the problem space. The second one is that  
the smaller dataset, the less capacity it requires, 
making a model prone to overfitting. Therefore, 
augmentation of the dataset can be used as  
a technique for reducing the generalization gap. 
Formally, data augmentation scheme [8] is 
defined as a model for the set 𝑋𝑎𝑢𝑔 created from 
the set 𝑋𝑜𝑏𝑠 that satisfies the following 
condition: 
 
� 𝑝(𝑋𝑎𝑢𝑔|𝑦)𝜇(𝑑𝑋𝑎𝑢𝑔)
ℳ�𝑋𝑎𝑢𝑔�=𝑋𝑜𝑏𝑠

= 𝑝(𝑋𝑜𝑏𝑠|𝑦) (21) 

 
ℳ is a mapping of augmented samples to 

their originals ℳ:𝑋𝑎𝑢𝑔 → 𝑋𝑜𝑏𝑠, 𝑦 is the output 
class and 𝜇 is the reference measure on 𝑋𝑎𝑢𝑔.  
In accordance with the above definition,  
the marginal distribution of augmented 
data 𝑝(𝑋𝑎𝑢𝑔|𝑦) must be the same as the 
distribution of the original data 𝑝(𝑋𝑜𝑏𝑠|𝑦). 
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An internal structure of the training data 

plays an immense role in deep learning.  
An important, yet not fully understood, 
phenomenon of deep learning is an ability to 
learn hierarchical representations of the data.  
It means that deep networks “learn” complicated 
concepts by decomposing them into simpler 
ones, which are decomposed into even simpler 
ones etc. In case of neural networks, the deeper 
layer is, the more complicated concepts it can 
learn, basing on the previous layer. Such 
phenomenon is mostly observed in the 
convolutional networks for image processing, 
due to the fact that visual features are typically 
easily interpretable [9]. It is also a basis for 
layer-wise training of specific architectures like 
stacked autoencoders [10] and deep belief 
networks [11].  

The hierarchical data decomposition is 
particularly interesting in the context of data 
augmentation process. This is due to the fact that 
artificial data can be generated not only from  
the input representation of the original data, but 
also from certain features of the data, assuming 
that there is a known transformation of  
the features to the input vector. It can be written 
as:  

𝒙� = 𝑑(𝒛�) (22) 
 
where 𝒛� is a vector of features of data and 𝑑 is  
a function that produces input samples from 
them. Of course, to be used for the training, 
distribution of the samples should follow  
the data augmentation scheme. The hidden 
layers of the deep network learn the reverse 

mapping 𝑑−1(𝑥�). One can, therefore, affect  
the training process of hidden layers by 
generating artificial input data from artificial 
features using the above formula. In particular, 
one can influence the regularization of these 
layer, as explained in the next section. 
 
4. Regularization with artificial data 
 
Almost every type of data augmentation scheme 
utilizes some kind of randomness. Let us 
formalize this randomness by representing it as  
a vector 𝑟 of random values, called noise vector. 
Two common types of noise are an additive one: 

 
𝒙� = 𝒓 + 𝒙 (23) 

 
and a multiplicative one: 

 
𝒙� = 𝒓 ∗ 𝒙 (24) 

 
Examples of both noise injection types are 

shown in the Figure 1. Let us now consider  
the case of additive noise injection. According to 
theoretical results of Bishop [12], adding noise 
to the input features is an equivalent to 
Tikhonov regularization. This means that 
training with such noise can be viewed as  
a regularized training, with the loss function 
equivalent to (11) and the regularization 
parameter equal to the noise variance. An exact 
form of the regularization component 𝑅(𝜃) 
depends on the loss function, though. Solutions 
for two common losses, namely mean squared 
error and binary crossentropy, were provided  
in [12].  

Fig. 1. Examples of additive and multiplicative noising for image and categorical data 



COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 13−18 (2019) 

 17 

In Bishop’s paper, the noise was applied to 
input features only. The noise, however, can be 
injected not only directly to the input vector 𝒙, 
but also to high-level features, assuming that we 
know the function 𝑑 that transform them into 
inputs, as described by (22). Therefore: 

 

𝒙� = 𝑑(𝒛�) (25) 

𝒛� = 𝒓 + 𝒛 (26)  
 
A special case of the above will be  

the function 𝑑 that produces artificial cases from 
the output labels, i.e. 𝒛 = 𝒚. We can therefore 
noise the output labels – this is an approach 
known as label smoothing, which also exhibits, 
albeit different, regularization properties [13]. 
Input noising and label smoothing are therefore 
two edge cases of the additive noise, applied to 
input and output features, respectively.  
A number of in-between cases of adding noise to 
the “hidden” features will result in Tikhonov- 
-like regularization of the inner layers of deep 
network.  

Considering the case of multiplicative 
noise, it is easy to notice similarities between it 
and Dropout method. More specifically, Dropout 
added to the input layer can be viewed as  
a special case of multiplicative noise, where the 
random component 𝒓 follows the Bernoulli 
distribution.   Since Dropout is a special case of 
DropConnect, the multiplicative noise can be 
represented by the diagonal matrix 𝑹, but with 
elements following any distribution that keeps 
up the data augmentation scheme. On the other 
hand, adding Dropout/DropConnect to inner 
layers can be interpreted as a special case of 
noise injection. In this case, however, the noise 
is not injected directly into input features, but 
into the high-level features of the data: 
 

𝒙� = 𝑑(𝒛�) (27) 

𝒛� = 𝒓 ∗ 𝒛 (28)  
 

 
As a consequence of the above formula, by 

knowing the transformation 𝑑 that produces 
input data from high-level features 𝒛, it is 
possible to inject multiplicative noise into them, 
resulting in data with regularization properties 
analogous to that of Dropout applied to a single 
hidden layer.  

 
5. Summary  
 

In this paper, we have presented analogies 
between the regularization methods for deep 
learning and data augmentation process 

interpreted as a noise injection. It was shown 
that, by generating the input data from high-
level features, it is possible to regularize hidden 
layers of the network by exploiting the ability of 
deep networks to learn hierarchical 
representations.  

The analysis given here is theoretical, but 
there already are experimental results that 
partially confirm these observations. A case of 
convolutional neural networks for stenosis 
detection [14] have shown that pretraining  
the network on artificial dataset results in 
reduction of test error rate on real dataset,  
and thus, smaller generalization gap.  
An improvement of test accuracy was also 
observed in the case of recurrent neural 
networks for ECG filtering, pretrained with 
synthetic signals [15]. A more definitive 
confirmation should be expected by the 
comparison of models trained for the same task 
with datasets created by injecting noise either 
into input features or high-level features of  
the real data. 
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O własnościach regularyzacyjnych danych sztucznych w uczeniu głębokim 
 

K. ANTCZAK 
 
W artykule omówiono własności regularyzacyjne sztucznych danych używanych w uczeniu głębokim. Dane te 
pozwalają na uczenie sieci neuronowych w sytuacji niedoboru danych rzeczywistych. Okazuje się, że proces 
generacji danych sztucznych, opisany jako zaszumianie wysokopoziomowych cech, wykazuje wiele 
podobieństw do istniejących metod regularyzacyjnych dla głębokich sieci neuronowych. Dzięki temu możliwa 
jest regularyzacja warstw ukrytych sieci poprzez generowanie sztucznych danych uczących w odpowiedni 
sposób. 
 
Słowa kluczowe: uczenie głębokie, regularyzacja, dane sztuczne. 
 


