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Abstract

Security threats, among other intrusions affecting the availability, confidentiality and in-
tegrity of IT resources and services, are spreading fast and can cause serious harm to
organizations. Intrusion detection has a key role in capturing intrusions. In particular, the
application of machine learning methods in this area can enrich the intrusion detection
efficiency. Various methods, such as pattern recognition from event logs, can be applied
in intrusion detection. The main goal of our research is to present a possible intrusion de-
tection approach using recent machine learning techniques. In this paper, we suggest and
evaluate the usage of stacked ensembles consisting of neural network (SNN) and autoen-
coder (AE) models augmented with a tree-structured Parzen estimator hyperparameter
optimization approach for intrusion detection. The main contribution of our work is the
application of advanced hyperparameter optimization and stacked ensembles together.

We conducted several experiments to check the effectiveness of our approach. We
used the NSL-KDD dataset, a common benchmark dataset in intrusion detection, to train
our models. The comparative results demonstrate that our proposed models can compete
with and, in some cases, outperform existing models.

Keywords: intrusion detection, neural network, ensemble classifiers, hyperparameter op-

timization, sparse autoencoder, NSL-KDD, machine learning

1 Introduction

Computer networks face various dynamic secu-
rity threats and intrusions affecting the availability,
confidentiality and integrity of resources and ser-
vices. To counteract these threats, many organiza-
tions designed and implemented intrusion detection
systems. In the context of information systems, an
intrusion is a deliberate unauthorized attempt to ac-
cess and manipulate information in order to render a

system unreliable or unusable. The goal of intrusive
behavior is to compromise the security of computer
and network components in terms of confidential-
ity, integrity and availability [13]. Intrusion detec-
tion is a set of actions to detect intrusive behavior,
to raise alerts, and to provide information to prevent
intrusive behavior. The key assumption of intrusion
detection is that attacks are significantly discernible
from normal activities. Intrusion detection is de-
fined as the task of identifying individuals who are
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either using a computer system without authoriza-
tion (i.e., crackers) or those who have legitimate ac-
cess to the system but are exceeding their privileges
(i.e., insider threats) [45, 15]. According to ISACA
[20], intrusion detection is the “process of moni-
toring the events occurring in a computer system or
network to detect signs of unauthorized access or at-
tack”. Intrusion detection is a complex task that can
be supported with various methods, such as statis-
tical analysis, expert knowledge and pattern recog-
nition from event logs. Intrusion detection systems
can be organized by the protected system compo-
nent or by the type of pattern recognition applied
to the task [21, 39, 31]. Regarding protected sys-
tem components, one can consider network-based
(NIDS) or host-based (HIDS) intrusion detection.
An NIDS identifies attacks within a monitored net-
work using potential alerts raised to the system op-
erator. An HIDS, however, is configured for a spe-
cific server environment and will monitor the inter-
nal resource utilization of the operating system to
warn of a possible attack. Intrusion detection sys-
tems can detect modifications in the code of exe-
cutable programs, detect unauthorized deletions of
files and issue warnings when an unauthorized use
of a privileged command is attempted. In further
sections of this article, our primary focus will be
on network intrusion detection. Regarding the type
of pattern recognition applied to the task, IDSs can
be classified as misuse/signature, anomaly and hy-
brid detection systems. A misuse/signature-based
IDS raises alerts when a known intrusive pattern in
packed data is detected. These known patterns can
be detected reliably; however, these systems strug-
gle with new, unseen attack patterns, and they re-
quire information on the attack type first, which is
not always available. Anomaly detection triggers
alerts when the network traffic behaves in a sig-
nificantly different way than predetermined normal
traffic patterns. Trained using only normal traffic,
anomaly detectors can detect new attack patterns;
however, they often make mistakes with normal, al-
beit unusual, network traffic patterns. Hybrid detec-
tion approaches combine the benefits of both signa-
ture detection and anomaly detection, such as by
performing anomaly detection on traffic classified
as normal by the signature detector and vice versa.

Applying data mining and machine learning
methods to intrusion detection has been suggested
in many previous works [51, 5, 19]. Several re-

searchers have explored new methods to detect
these cyberattacks [17, 3, 8]. The application of
machine learning algorithms benefits intrusion de-
tection research in particular as the volume of net-
work traffic makes earlier analysis methods less
effective and time-consuming. Several other ap-
proaches, such as collaborative intrusion detection
systems (CIDSs), have also been published to de-
velop more efficient intrusion detection systems
(IDSs) [14, 43].

The main goal of our research is to offer a
machine learning method for intrusion detection.
We suggest a stacked ensemble neural network
(SNN) combined with an autoencoder (AE) model
optimized with tree-structured Parzen estimators
trained on the NSL-KDD benchmark dataset. We
found only a limited number of similar solutions in
the existing intrusion detection literature [3]; how-
ever, these approaches provide promising intrusion
detection results.

The main contribution of our work is the ap-
plication of advanced hyperparameter optimiza-
tion and stacked ensembles together. Application
of more advanced hyperparameter search strate-
gies resulted that we managed to achieve perfor-
mance comparable to more recent variational au-
toencoder (VAE) and conditional variational au-
toencoder (CVAE) based outcome. We compared
our results with those of similar initiatives; and
in terms of some validation metrics, the proposed
models outperformed existing models. We achieved
a higher perclass recall rate on minority classes.
Two approaches were provided to deal with imbal-
anced data, which is common in IT security cases.
First, we applied a synthetic oversampling method-
ology (SVM SMOTE) to eliminate class imbalance,
second, we used autoencoder models.

Our work first provides an overview of related
works on hyperparameter optimization, AE net-
works and IDSs. The following section describes
the suggested models followed by the achieved re-
sults and a discussion on how our models performed
compared to contemporary literature. Finally, the
last section provides a conclusion, including the po-
tential application of our findings and further re-
search opportunities.
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2 Related work

Atrtificial neural networks (ANNs) are machine
learning models inspired by the learning process
of the human brain. They are widespread in busi-
ness applications, classification and forecasting due
to their advantages, such as possessing a high tol-
erance to noise, solving nonlinear and ill-defined
problems based on parallel composition and not be-
ing restricted by normality and/or independence as-
sumptions. ANNs can be distinguished by the ap-
plication area, network architecture and learning al-
gorithm. Recently, the utilization of ANNs has in-
creased [2, 52, 7, 50].

Tian et al. [49] applied a distributed neural net-
work learning algorithm (DNNL) for intrusion de-
tection. They compared their approach with other
works on the KDD Cup 1999 benchmark dataset
[46], and the proposed model achieved a higher de-
tection rate and lower false alarm rate. Beghdad
studied five neural network types to classify the nor-
mal and attack patterns using a sample of the KDD
Cup 1999 dataset containing 18,285 manually se-
lected records [8]. The main contribution of their
approach is the investigation of the performances
of multilayer perceptron (MLP), generalized feed
forward (GFF), radial basis function (RBF), self-
organizing feature map (SOFM) and principal com-
ponent analysis (PCA) neural networks at detect-
ing attacks and classifying attacks into one or more
classes. GFF resulted in the best confusion matrix
in the multiclass case.

Another valid approach is the use of ensem-
ble models to improve classification performance.
Three approaches exist for creating model ensem-
bles: bagging, boosting and stacking [36, 44]. Bag-
ging, or bootstrap aggregation, combines majority
voting with machine learning models to improve
predictions. Boosting sequentially trains weak pre-
diction models, measures the error between pre-
dicted and expected outcomes, assigns weights to
observations based on the error, and then trains a
new model, thus creating a more powerful model.
Stacking combines multiple machine learning mod-
els using a meta-classifier. The base-level models
are first trained on the training data, and then the
meta-classifier is trained on the predictions of the
base models. Stacking, compared to boosting and
bagging, can reduce the model variance and bias at

the same time, providing powerful aggregate pre-
diction models. This improvement stems from the
heterogeneity of the base models, which could be
achieved by training the same type of models on dif-
ferent data features or by training different models.
Considering the advantageous property of simulta-
neously reducing the variance and bias in model
predictions, we decided to use this ensemble de-
sign for our intrusion detectors. A drawback of en-
semble models is increased complexity as multiple
models must be trained and maintained.

2.1 Hyperparameter optimization

Machine learning models require setting the pa-
rameters prior to training. These parameters could
directly influence the performance achieved by a
model; therefore, an automated approach for select-
ing these parameters is crucial. This approach is
called hyperparameter optimization, a method en-
compassing the regular training-testing-evaluation
process of machine learning.

The two most common methods for hyperpa-
rameter optimization are grid and random search,
but these are not suitable for deep neural networks
as both methods have issues, either with execution
time or with performance. Other approaches use
dedicated algorithms, such as Bayesian optimiza-
tion [41], gradient-based optimization or evolution-
ary optimization, to find the best set of parameters.

In our study, we used the tree-structured Parzen
estimator (TPE) [12, 11], a method used to solve
expensive single-objective optimization problems.
This method works by replacing the distributions
of the prior parameter settings with nonparamet-
ric densities. This surrogate naturally handles con-
tinuous, discrete, categorical, and conditional vari-
ables. Furthermore, this surrogate has lower com-
putational complexity than Bayesian optimization
and can scale to tens of variables and thousands of
parameter samples [37]. The tree-structured Parzen
estimator has been adopted as the main model in
hyperopt [10, 9], a Python framework designed for
hyperparameter optimization.

2.2 Autoencoder networks

Autoencoder networks are unsupervised neural
network algorithms created when the target vectors
are set to be identical to the input vectors. An AE
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can be divided into three parts: an encoder, learning
interesting patterns in the input data; a bottleneck
creating a limited representation; and a decoder re-
constructing the input from this limited represen-
tation. Training an AE, performed using a forward
pass followed by back propagation, is similar to that
of a fully connected neural network. The most im-
portant differences are in the network architecture;
the choice of the expected output to compare pre-
dictions to; and in the case of intrusion detection,
whether the training data have been filtered prior,
for example, by an intrusion class. Then, the AE
reconstruction error (the MSE between original and
predicted inputs) will be lower for that class and
greater for all the remaining classes, which can be
exploited for anomaly detection purposes.

The base version of an AE consists of three lay-
ers: the input acting as an encoder, the hidden layer
as a bottleneck and the output layer as a decoder.
This setup can be extended with additional hidden
layers to create deep AEs (DAEs). These hidden
layers may contain fewer neurons than preceding
(or following, in the case of decoder) layers. AEs
with layers designed in this way are called under-
complete AEs, and they learn a compressed repre-
sentation of the data. AEs that have no such con-
straints on the hidden layers are called overcom-
plete AEs. Overcomplete AEs have a tendency to
learn the identity function and thus have reduced
usability. To overcome this, the activations of over-
complete AEs are regularized to provide a sparse
representation of the data. These AEs are called
sparse AEs (SAEs). Sparsity is achieved using the
Kullback-Leibler divergence (KL divergence) [27],
with the following formula

N! N!

R P 1-p
Y. KL(pllpg) = ) plog =+ (1 —p)log 7—
q=1 q=1 Pq —Pgq
1
where p, = =Y/ al(x;) is the average activation
n

of neuron g over all inputs x;, N is the number of
neurons for hidden layer / and p is the rate used to
enforce activation sparsity. KL divergence tends to
infinity when the average activation of neuron g is
greater or lower than the threshold p. As the aver-
age activation of a neuron with sigmoid activation
function is only small if most of the activations are

close to zero, the KL divergence is an appropriate
function to enforce sparsity.

The variational autoencoder (VAE) is a genera-
tive model suggested by Kingma and Welling [25].
VAE models are tasked to generate the latent dis-
tribution of the input, captured by a standard de-
viation and a mean vector, each generated by two
hidden layers simultaneously at the bottleneck. We
call VAEs generative models as the decoder, to-
gether with a random sample from a multivariate
Gaussian distribution fed to the decoder, can gen-
erate new synthetic observations. A drawback of
VAE:s is that they can only generate new data for
one class, which is a challenge if multiclass classi-
fication is expected in following connected model
components. The conditional variational autoen-
coder (CVAE) is an extension of the VAE [26] that
settles this challenge. A CVAE converts the unsu-
pervised training model of VAEs into a supervised
training model by feeding expected class outputs as
inputs to the VAE model.

VAE and CVAE models have been recently ap-
plied for anomaly detection [23, 47, 16, 35, 29,
28, 53]. VAE models were applied for simulat-
ing network attacks [16] and for intrusion detec-
tion [35]. Lopez-Martin et al. suggested an intru-
sion detection CVAE (ID-CVAE) classifier to per-
form classification and feature recovery [29]. The
ID-CVAE applies the nearest neighbour method
based on the Euclidean distance to classify the test
samples. In a later study, [28] compared a VAE
and a CVAE model applied to synthetic oversam-
pling methods and reported increased prediction
performance using the VAE models, especially with
the CVAE model labeled the variational generative
model (VGM).

Yang et al. [53] proposed a novel intrusion
detection model ICVAE-DNN, which combines an
improved conditional variational AE (ICVAE) with
a deep neural network (DNN) model. The role of
the ICVAE is to learn and explore potential sparse
representations between network data features and
classes. A DNN was used to automatically extract
high-level features and adjust network weights us-
ing back propagation and fine-tuning to better ad-
dress the problem of the classification of complex,
large-scale and nonlinear network traffic. The arti-
cle evaluates the performance of the ICVAE-DNN
using the NSL-KDD dataset. The proposed ICVAE-
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DNN provides higher detection rates in minority at-
tacks (i.e., U2R, R2L, shellcode and worms) than
six other well-known classification algorithms: the
KNN, multinomial NB, RF, SVM, DNN and DBN.

Ludwig [30] developed an ensemble of 4 dif-
ferent neural network models (AEs, DBNs, DNNs
and extreme learning machines (ELM)) with the re-
sults aggregated using a simple majority vote mech-
anism. The article compared predictions differenti-
ating between normal traffic and the 4 attacks in-
dividually on the NSL-KDD dataset. The work re-
ported high accuracy with each comparison and a
higher than average recall for minority classes.

2.3 Related work in IDS domain

Yao et al. [53] introduced hybrid multilevel data
mining, a system for the multiclass classification of
unbalanced intrusion data. The system consists of
three components: a preprocessing component for
data encoding, data normalization and generating
one vs. rest subsets for feature selection and classi-
fication. The data mining module applied k-means
clustering followed by a support vector machine, an
artificial neural network and a decision tree-based
classification for each cluster. The third phase in-
volved correcting classifications by applying a de-
cision tree classifier to previously classified, ran-
domly sampled data. The system selected the best
performing model for each sample vs. the rest of
the data sample and cluster. Performance was mea-
sured using the precision, recall, F-score and accu-
racy metrics. The authors claimed that that the pro-
posed method achieved high performance on DOS
and R2L classes while the performance on normal
and probe classes were average compared to the re-
sults of other works in the field.

Yin et al. [54] proposed a deep learning ap-
proach for intrusion detection using recurrent neu-
ral networks (RNN-IDS). Al-Qatf et al. [4] com-
bined sparse autoencoders with an SVM classifier.
This was achieved by training an SAE on unlabeled
data to generate a low-dimensional representation.
Then, new data with target labels were fed to the
encoder layers only. The reduced dimension ex-
planatory features were then fed to the SVM clas-
sifier. The authors not only reported improved per-
formance but also improved the memory footprint
and lowered the training time for the SVM model.
Similarly, Javaid et al. [22] combined an autoen-

coder with a multiclass logistic regression. Both
studied reported classification performances better
than those of ensemble models.

Based on the literature we reviewed, we found
two areas that could be improved. First, the sam-
pling methodology used by [33, 38, 55] is ques-
tionable as both the training and test samples were
created separately from the same dataset based on
the same stratified sampling methodology: all tar-
get classes were sampled proportionately to their
size except for the underrepresented U2R and R2L
classes, 100% of which were sampled. The target
class is unavailable in a real environment, and as-
sumptions about the class distribution of the test set
inherently hold the threat of information leakage.
The second issue we found with most articles, es-
pecially [33, 38, 55], is the prominent use of the
accuracy as a performance metric. The accuracy
works best as a metric when all target classes are
balanced. This is not the case for network intru-
sion detection, where there are large imbalances in
the data, with a disproportionate amount of good
or normal traffic data and very few attack cases in
most cases [40]. The best metrics for classification
on imbalanced datasets are the precision, recall (re-
ferred to as detection rate in some papers), false-
positive rate, specificity and AUC based on ROC
curves. Most of the metrics listed are applicable in
multiclass classification, except the AUC, which is
only available in binary or one vs. all contexts.

3 Proposed approach

In this section, we present the NSL-KDD
dataset and the architecture and functioning of our
three proposed models. Each model follows an en-
semble intrusion detection approach by having one
model for each feature group, with the final class la-
bels provided by a separate aggregation model gath-
ering the class labels of each base model.

3.1 Dataset and data preprocessing

We selected the NSL-KDD dataset [48] as the
benchmark dataset for intrusion detection model
comparison. Although the dataset has been avail-
able for a long time, it is still widely used as a
standard for the evaluation of different IDSs. This
dataset is a revised version of the KDD Cup 1999
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dataset [46] for fixing the problem of large numbers
of redundant observations.

The NSL-KDD dataset contains 125,973 and
22,544 records in the training and test sets, respec-
tively. The test set does not have the same proba-
bility distribution as the training set, and it includes
unknown attack types that do not exist in the train-
ing set. According to [46], the purpose of this was
to simulate the appearance of new types of intru-
sions over time; thus, the dataset still has value de-
spite its age.

Each record contains 41 different features with
the 42nd feature containing information on the var-
ious intrusion attempts to which the traffic obser-
vation was connected. These techniques can be as-
signed into one of 5 classes: normal and 4 attacks.
The descriptions of these attack classes are as fol-
lows:

— DoS (Denial of Service): an attacker tries to pre-
vent legitimate users from using a service

— Probing: network surveillance and other probing
attacks

— R2L (Remote to Local): unauthorized access
from a remote machine

— U2R (User to Root): unauthorized access to lo-
cal super user (root) privileges

NSL-KDD is a highly imbalanced dataset for
intrusion detection; therefore, data preprocessing
had to be implemented. The outline of this process
is given in Figure 1. Some of the independent fea-
tures had to be changed from numerical to numeri-
cally encoded categorical representations. The orig-
inal class labels in NSL-KDD are too detailed and
were joined together into 5 categories based on con-
clusions from [46]. Feature selection based on the
relative deviation of independent features was per-
formed. Depending on the feature category, we ap-
plied joint one-hot encoding on categorical features
and min-max normalization on numerical input fea-
tures and transformed the target feature to an integer
representation. To reduce the effect of the class im-
balance, we resampled the data using the SVM syn-
thetic minority oversampling technique (SMOTE)
[34, 6]. This step was conducted only for the train-
ing sample of the NSL-KDD dataset as synthetic

resampling is irrelevant for calculating model per-
formance metrics. Finally, as we have already out-
lined in Section 3, we split the data into four fea-
ture groups according to [46]. These feature groups
were intrinsic, time-based traffic, host-based traffic
and content features. Following these preprocess-
ing steps, the data are prepared to train our model
proposals.

Dataset
(NSL-KDD)

L
auway

v

Feature data type
recoding

¥

Target feature
recategorization;
Select target

¥

Simple feature
selection

L]

Normalize +
OHE data;
Target to numerical

L]

Data sampling
{only on training set)

¥

Spilit feature groups

¥

Ready for training /
testing

Figure 1. Data preprocessing steps for the
proposed models.

3.2 Model 1:
(SNN)

Our first proposed model is a stacked neural net-
work built on the TensorFlow [1] and Keras [18]
open-source libraries (see in Figure 2).

Stacked neural network
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Figure 2. SNN model architecture.

Table 1. TPE hyperparameter settings for the SNN
and AE-SNN models.

Generator function
hp.loguniform(10~3, 10)
hp.loguniform(10~3,
5-1071H
hp.uniform(10~1,5-1071)

Parameter
Learning rate
Dropout rate

Learning rate
decay

The number of
hidden layers
Neurons per layer

hp.choice(1, 5)

hp.quniform(5, 50, g = 1)
converted to integer
hp.choice(sigmoid,
ReLU, tanh)

Activations
per layer

The neural network-based predictor model was
constructed using a stacked ensemble. The four
base models were trained on one of four feature
groups. The flexibility of TensorFlow and Keras al-
lowed model training to explore a wider range of
hyperparameters, such the parameters of the num-
ber of hidden layers, the number of neurons per hid-
den layer, the activation function for each hidden
layer, the learning rate and the learning rate decay
over time. We used the TPE algorithm for hyperpa-
rameter optimization as it possessed advantageous
properties compared to Gaussian process optimiza-
tion. The target measure to optimize the hyperpa-

rameters was the sparse categorical cross entropy
achieved by the model. The distributions for TPE
to sample from were defined according to the sug-
gestions of [12, 10, 9] (presented in Table 1).

The distributions sampled from were log uni-
form for learning and dropout rates and uniform for
the learning rate decay. We set the number of hid-
den layers to be randomly picked from a list of num-
bers between 1 and 5. The number of hidden layers
also determined the numbers of neurons and types
of activations functions per layer for each hidden
layer. The number of neurons per hidden layers was
sampled from a quantized uniform distribution con-
verted to an integer value. The activation function
was chosen from a list consisting of the sigmoid,
ReLU and tanh functions. This dependent hyper-
parameter value selection is one of the many ad-
vantages of the TPE algorithm over Gaussian pro-
cesses.

Other neural network parameters were set as
their default values. For example, the number of
epochs during training was set to 100, the batch size
was set to 1024 and the lower boundary for learning
rate reduction was set to 1073, The learning rate
reduction and an early stopping criterion with pa-
tience set to the square root of the number of epochs
were added as callback policies expanding the ca-
pabilities of the training process and reducing the
execution time. Another unaffected parameter was
L2 regularization, the coefficient of which was fixed
at 1073; and we used the Adam solver of [24] for
training.

3.3 Model 2: Autoencoder enhanced
stacked neural network (AE-SNN)

The AE-SNN consisted of the earlier SNN ex-
tended with DAEs on the base classifier level (Fig-
ure 3). Each of these AEs was first trained only on
normal traffic; then, before training the base mod-
els of the SNN, these AEs were used to predict all
observed network connection data.

When attack connections were predicted as if
they were normal traffic, we expected the squared
difference between the actual and predicted features
to be higher for attacks than for normal traffic. This
difference can be calculated at both the observation
and feature levels, transforming both the training
and test data in a way that makes the SNN com-
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ponent better at detecting differences between the
attack categories and normal traffic. The rest of
the model training was the same as with the SNN
model. We used TPE for hyperparameter optimiza-
tion with the hyperparameter settings shown in Ta-
ble 1. The parameterization of the DAE model is
shown in Table 2.
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Figure 3. AE-SNN model architecture.

We used a linear activation function and the
Adam optimizer with a learning rate of 1073 and
an early stopping criterion ending optimization af-
ter no improvement was achieved over a number of
epochs equal to the square root of the total epochs.
We did not perform regularization on the hidden
layers of the autoencoder. In this model, the bot-
tleneck was determined as a rounded integer of the
square root of the number of input features. Finally,
a sequential layer reduction rate, which decreases
the number of neurons for each consecutive hidden
layer in the encoder up to the bottleneck layer and
is then reversed for the decoder layer, enforcing an
undercomplete AE, is introduced.

3.4 Model 3: Sparse Autoencoder Stacked
Neural Network (SAE-SNN)

In this model proposal, we applied a sparsity
condition to the activations of each hidden DAE
layer. Furthermore, instead of squared differences
between actual and predicted observations, we used
the output of latent features of each SAE to train the
base classifiers of the SNN component. Apart from
this, no other changes were applied to data prepro-
cessing or to the rest of the model training.
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Figure 4. SAE-SNN model architecture.

The model architecture changed to accommo-
date the updated autoencoder models (see in Figure
4). The encoder bottleneck generates the latent fea-
tures (Z) based on the actual inputs (X) provided to
the AE. The decoder reconstructs the values of X, or
at least a close approximation (X). At a later step,
the base models of the SNN were trained not on X,
but on the latent features Z. Here, we used the abil-
ity of AE models to generate a reduced dimensional
representation of the original features.

Additional changes to the autoencoders com-
pared to the AE-SNN were a different layer con-
figuration; a different number of neurons for each
hidden layer, except the bottleneck; and the num-
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Table 2. Autoencoder parameter settings.

Parameter

Parameter setting

Activation function

Layer reduction rate
Optimizer

Number of bottleneckneurons
Number of epochs

Early stopping patience

Linear

2

Adam (LR=10"7)
round(+/|number_of _inputs|)
10°

round (+/epoch)

Table 3. SAE parameter settings.

Parameter Parameter setting
Activation function Sigmoid
Number of hidden layers |log, (number_of _inputs) |

Number of hidden neurons per layer

Number of bottleneck neurons
Hidden layer activity
regularization

Optimizer

Number of epochs

Early stopping patience

3 - (number_of _inputs)
|log, (number_of _inputs) |
KL divergence
A=103,p=5-1072)
Adam (LR = 1073)

102

|epochs)

ber of neurons (latent feature Z) ) for the bottleneck
layer (Table 3).

We changed the activation function for each
hidden layer to the sigmoid function in order to ef-
fectively regularize them with the Kullback—Leibler
divergence. The optimizer we used was Adam with
a learning rate of 1073,

4 Results and discussion

This section aims to evaluate the proposed in-
trusion detector models introduced in the previous
section.

We performed the assessment by giving an
overview of some of the most important classifi-
cation metrics of our three model proposals (SNN,
AE-SNN and SAE-SNN) (Table 4); then by com-
paring the accuracies and recalls of the three mod-
els with those of the models studied in the contem-
porary intrusion detection literature (Table 5). Fur-
thermore, Yang et al. [53] provided detailed per-
class recalls, which allowed to perform the compar-
isons (Table 6).

Table 4 shows the accuracy, recall, precision,
F1 score and false positive rate (FPR) of each of

our model proposals. Apart from accuracy, each
metric has been macro-averaged from per class met-
rics. This is especially true for F1 score, explaining
why it does not fall between the recall and precision
scores. The SNN model proved to be the best for
accuracy, precision and F1 score, while AE-SNN
was the best according to recall and FPR metrics.
While it did not excel for any metric, SAE-SNN
was the second best model for recall, precision and
F1 score. We presented metrics, we analyze accu-
racy and recall scores in more detail in the following
paragraphs.

Table 5 shows the results compared with arti-
cles also studying intrusion detection. The works
listed here can be divided into three categories: sin-
gle model intrusion detectors, detecting network at-
tacks using only one model; models enhanced with
synthetic sampling and models enhanced with AEs.
Most of the listed works studied AE network per-
formance primarily for intrusion detection while in-
cluding non-AE models as references. The mean
accuracy of the collected models was 77.72%. The
SNN model outperformed this, and the AE-SNN
and SAE-SNN achieved lower than average accu-
racy.
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Table 4. Overall performance metrics for the proposed models.

Metrics Model

SAE-SNN AE-SNN  SNN
Accuracy 73.21% 74.26%  77.75%
Recall 63.70% 65.82%  59.23%
Precision 61.73% 57.44%  73.54%
F1 Score 59.50% 54.90% 62.85%

False Positive Rate 8.16% 6.56% 7.27%

Table 5. External comparisons in terms of accuracy and recall. The gray background indicates the results
of our method.

Model Accuracy Recall
KNN [53] 76.51%  48.30%
Multinomial NB [53] 78.73%  47.69%
RF NB [53] 76.49%  48.84%
SVM [53] 72.28%  45.88%
DNN [53] 80.22%  52.77%
DBN[53] 80.82%  53.61%
ROS-DNN[53] 78.26%  49.59%
ADASYN-DNNJ53] 80.10%  51.47%
ICVAE-DNN|[53] 85.97%  62.66%
VGM + RF[28] 73.61% —
VGM + Logistic Regression[28] 77.29% —
VGM + Linear SVM[28] 77.23% —
VGM + MLP[28] 79.26% —
SMOTE + RF[28] 74.25% —
SVM SMOTE + Logistic Regression[28]  76.29% —
SVM SMOTE + Linear SVM[28] 77.99% —
SVM SMOTE + MLP[28] 77.98% —
Decision Tree[54] 74.60% —
NB[54] 74.40% —
RF[54] 72.80% —
NB Tree[54] 75.40% —
MLP[54] 78.10% —
RNN[54] 81.29% —
SAE + SMR[22] 79.10% —
AE + SVM[4] 80.48% —
SAE-SNN 7321%  63.70%
AE - SNN 74.26%  65.82%

SNN 77.75%  59.23%
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The authors of [53] and [30] also published
model recalls. The mean recall of these was
51.23%. All our proposed models managed to
outperform this value. In fact, both the AE-SNN
at 65.82% and the SAE-SNN at 63.70% achieved
better recalls, even compared to the best model
in the referenced intrusion detection literature, the
ICVAE-DNN, with a recall of 62.66%.

In addition to macroaveraged overall recall,
Yang et al. [53] published per class recalls, en-
abling a more detailed comparison. The mean
recalls based on the collected data were 95.5%
for normal, 77.44% for DoS, 64.52% for probe,
13.84% for R2L and 4.85% for U2R classes. Our
AE-enhanced model proposals did not manage to
achieve good recalls on normal and DoS traffic con-
nections compared to the measurements of [53] and
[30], and they underperformed at detecting probe
attacks compared to [30].

The AE-SNN and SAE-SNN performed better,
especially on U2R attacks and with R2L attacks;
and our proposed models performed well, only be-
hind [53]. A likely explanation for the poor perfor-
mance of the proposed models on majority classes
and better performance on minority classes is that
the AE-SNN and SAE-SNN traded off good recall
on majority classes for an improvement in classifi-
cations on minority classes, which in turn explains
the degraded performance measured by the accu-
racy as that metric can be influenced by biases orig-
inating from class imbalances. This trade-off be-
came more apparent when we compared the SNN
model with SVM SMOTE sampling to the two AE-
enhanced proposals. With the SNN, we achieved
better overall accuracy and better recall on normal
and DoS classes and worse recall on probe, R2L
and U2R. Comparisons with [30] confirmed this as
well. Our SAE-SNN proposal achieved a 33.0% re-
call on R2L and 50.75% on U2R classes compared
to 32.39% and 22.00%, respectively.

The likely cause of the significantly improved
performance for models enhanced by AE networks
are the AE networks themselves. Due to how they
were trained only on normal data, they are better
suited for differentiating minority attacks from the
majority attacks and normal traffic.

This section compared several works from the
related literature on their reported performance
measurements with the performance of our pro-

posed models. Based on certain per-class and ag-
gregate measures, the proposed models can com-
pete and outperform the works in the related litera-
ture.

The contribution of our research is in the com-
bination of the following techniques:

Intrusion detection addresses imbalanced data,
that is, when the volume of benign traffic is far
greater than the volume of malicious activity. This
article addresses imbalanced data in two ways: first,
by applying SVM SMOTE, a synthetic oversam-
pling methodology designed to eliminate class im-
balance; and second, by using AE networks. AE
networks are neural networks designed to learn hid-
den representations of data. AE networks can be
used to perform intrusion detection if the task is
treated as anomaly detection. In our article, we used
two AE variations, DAEs with more than one hid-
den layer and SAE models, where the activations of
the hidden layers were kept sparse with the use of
the KL divergence. Following the AEs, we trained
a stacked model of fully connected neural networks
for the final intrusion predictions. More advanced
variations of AEs, such as variational AEs (VAEs)
and conditional VAEs (CVAEs), exist; however, to
our knowledge, no article using these variations per-
formed a more advanced hyperparameter search for
fine-tuning further neural networks connected to the
AE models. For hyperparameter search, we used
tree-structured Parzen estimators to train the base
neural network classifiers of the stacking ensemble.
The point of TPEs is to use a more intelligent search
strategy than grid and random search, thus converg-
ing on an optimal solution faster. Furthermore, the
tree structure permits at least some level of neural
architecture search on the classifier models.

5 Conclusion

Our tested AE-SNN and SAE-SNN models
confirmed the effectiveness of autoencoder net-
works in the field of intrusion detection. Compared
with other published results [53, 28, 30], our models
achieved a higher per-class recall rate on minority
classes and a lower recall rate on majority classes.
This suits the requirements of intrusion detection,
where the costs of misclassifying an attack in a mi-
nority is greater than the costs of misclassifying net-
work traffic sent by a legitimate user. An interest-
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Table 6. Recall comparison per class. The gray background indicates the results of our method.

Model Normal DoS Probe R2L U2R

KNN [53] 92.78%  82.25% 59.40%  3.56% 3.50%
Multinomial NB [53]  96.03%  37.10% 82.61% 22.22%  0.50%
RF [53] 97.37% 80.24% 58.53%  7.55% 0.50%
SVM [53] 92.82% 74.85% 61.71%  0.00% 0.00%
DNN [53] 96.10% 85.40% 65.30% 14.56%  2.50%
ROS- DNN [53] 92.61% 80.32% 65.26% 12.75%  6.00%
SMOTE- DNN [53] 96.59%  82.19% 56.75% 10.93% 11.00%
ADASYN-DNN [53] 96.43% 83.28% 59.81%  9.84% 8.00%
ICVAE- DNN [53] 97.26% 85.65% T497% 44.41% 11.00%
SAE-SNN 85.28%  71.80% 77.65% 33.00% 50.75%
AE-SNN 83.67% 77.28% 77.32% 32.62% 58.21%
SNN 91.40% 84.38% 59.44% 31.09% 29.85%

ing result of our research is that despite using earlier
AE models, namely, DAEs and SAEs, we managed
to achieve performance comparable to more recent
VAE- and CVAE-based results as our models ben-
efited from more advanced hyperparameter search
strategies.

A certain limitation of our research is the
dataset used. The NSL-KDD dataset stems from
the DARPA 1998 dataset, which was created over
20 years ago. Despite the best efforts of the original
creators, much has changed since the inception of
the dataset; and despite its usefulness as a bench-
mark, the proposed model could be evaluated on
other datasets. In the future, we are planning to test
our models on recently published datasets such as
UNSW-NB15 [32] or either the 2017 or 2018 ver-
sion of the CSE-CIC-IDS-20xx [42], and we will
pay attention to increasing the recall rate on major-
ity classes using VAEs and CVAEs in hyperparam-
eter search.
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