PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal monitoring for Metallic Additive Manufacturing multi-beads multi-layers parts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among Metallic Additive Manufacturing processes, Directed Energy Deposition (DED) processes are very promising for the Industry. An issue that prevents a larger development of DED is the reliability of the process, since its complexity makes the result of the manufacturing variable. Thermal behavior is a critical aspect for which uncontrolled phenomena can lead to part failure. Some thermal monitoring and closed-loop control methods have been developed, that enables to observe and regulate the heating of the processed part. However, these methods rely on local measures from a region or a single external surface of a part, and thus provide partial information of thermal fields in the whole part volume. This paper proposes a method that combines diverse data to compute online a process indicator that is meaningful for the thermal state of the whole part, and hence for the control of the manufacturing of multi-beads multi-layer parts. A simulation-based model using thermal partial data is proposed. An online monitoring experiment is proposed for validation of the model. Relevance of the control method to ensure mechanical properties of the part is then tested.
Rocznik
Strony
92--100
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • GeM - UMR CNRS 6183, Centrale Nantes, France
  • Additive Manufacturing Group, Joint Laboratory of Marine Technology (JLMT) Centrale Nantes – Naval Group, France
  • GeM - UMR CNRS 6183, Centrale Nantes, France
  • Additive Manufacturing Group, Joint Laboratory of Marine Technology (JLMT) Centrale Nantes – Naval Group, France
  • GeM - UMR CNRS 6183, Centrale Nantes, France
  • Additive Manufacturing Group, Joint Laboratory of Marine Technology (JLMT) Centrale Nantes – Naval Group, France
  • Additive Manufacturing Group, Joint Laboratory of Marine Technology (JLMT) Centrale Nantes – Naval Group, France
  • Naval Group Research, Technocampus Ocean, France
Bibliografia
  • 1. DING D., PAN Z., CUIURI D., LI H., 2015, Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests, Int. J. Adv. Manuf. Technol., 81, 465–481.
  • 2. KERNINON J., MOGNOL P., HASCOET J.-Y., LEGONIDEC C., 2008, Effect of Path Strategies on Metallic Parts Manufactured by Additive Process, Solid Freeform Fabrication Symposium, 352–361.
  • 3. VENTURINI G., MONTEVECCHI F., SCIPPA A., CAMPATELLI G., 2016, Optimization of WAAM Deposition Patterns for T-crossing Features, Procedia CIRP, 55, 95–100.
  • 4. BANDYOPADHYAY A., TRAXEL K. D., 2018, Invited Review Article: Metal-Additive Manufacturing—Modelling Strategies for Application-Optimized Designs, Additive manufacturing, 22, 758–774.
  • 5. DENLINGER E.R., HEIGEL J.C., MICHALERIS P., PALMER T.A., 2015, Effect of Inter-Layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys, Journal of Materials Processing Technology, 215, 123–131.
  • 6. GENG H., LI, J., XIONG J., LIN X., 2017, Optimisation of Interpass Temperature and Heat Input for Wire and Arc Additive Manufacturing 5A06 Aluminium Alloy, Science and Technology of Welding and Joining, 22, 472–483.
  • 7. MAETZ J.Y., 2014, Évolution de la Microstructure d’un Acier Inoxydable Lean Duplex Lors du Vieillissement, PhD thesis, INSA Lyon.
  • 8. WU B., PAN Z., DING D., CUIURI D., LI H., FEI Z., 2018, The Effects of Forced Interpass Cooling on the Material Properties of Wire Arc Additively Manufactured Ti6Al4V alloy, Journal of Materials Processing Technology, 258, 97–105.
  • 9. DING J., et al., 2011, Thermo-Mechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multi-Layer Parts, Computational Materials Science, 50, 3315–3322.
  • 10. ZHOU X., ZHANG H., WANG G., BAI X., 2017, Three-Dimensional Numerical Simulation of Arc and Metal Transport in Arc Welding Based Additive Manufacturing, Int. J. of Heat and Mass Transfer, 103, 521–537.
  • 11. HU D., KOVACEVIC R., 2003, Sensing, Modeling and Control for laser-Based Additive Manufacturing, International Journal of Machine Tools and Manufacture, 43, 51–60.
  • 12. DONGQING Y., WANG G., ZHANG G., 2012, Thermal Analysis for Single-Pass Multi-Layer GMAW Based Additive Manufacturing Using Infrared Thermography, Journal of Materials Processing Technology, 244, 215-224.
  • 13. FARSHIDIANFAR M.H., KHAJEPOUR A., GERLICH A., 2016, Real-Time Control of Microstructure in Laser Additive Manufacturing, International Journal of Advanced Manufacturing Technology, 82/5–8, 1173–1186.
  • 14. CHEN Z., GUO X., SHI J., 2020, Hardness Prediction and Verification Based on Key Temperature Features During the Directed Energy Deposition Process, International Journal of Precision Engineering and Manufacturing – Green Technology, 8, 453–469.
  • 15. CHABOT A., RAUCH M., HASCOËT J.-Y., 2019, Towards a Multi-Sensor Monitoring Methodology for AM Metallic Processes, Welding in the World, 63/3, 759–769.
  • 16. KARNATI S., MATTA N., SPARKS T., LIOU F., 2013, Vision-Based Process Monitoring for Laser Metal Deposition Processes, 24th International Solid Freeform Fabrication Symposium, Austin, TX.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80abb88a-1168-48ea-9ff1-f0a77591aa21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.