PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of compressive strength and compressive modulus parallel to the grain of oak and tauari wood after thermo-mechanical modification

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ocena wytrzymałości na ściskanie i modułu przy ściskaniu wzdłuż włókien drewna dębu i tauari po modyfikacji termo-mechanicznej
Języki publikacji
EN
Abstrakty
EN
European oak and tauari wood were subjected to thermomechanical modification. One treatment cycle consisted of three stages: heating the wood in a hydraulic press; wood densification; and cooling the wood samples in unheated hydraulic press without exerting pressure. The treatment temperature was 100 °C or 150 °C. The modification temperature significantly affected the compressive strength parallel to the grain of oak and tauari wood. Such dependencies were not found in the case of compressive modulus of elasticity parallel to the grain of tested wood species. The compressive strength of tauari wood modified at 100 oC and 150 oC was, respectively, 16% and 20% greater than the compressive strength of oak wood modified at the same temperatures. The compressive strength parallel to the grain of the oak and tauari wood depended linearly on wood density and load.
PL
Drewno dębu i tauari poddano obróbce termo-mechanicznej. W pierwszym etapie drewno ogrzewano kontaktowo w prasie hydraulicznej, następnie zagęszczano, po czym poddawano chłodzeniu w nieogrzewanej prasie hydraulicznej bez użycia ciśnienia. Temperatura półek prasy, przy której prowadzono proces zagęszczania drewna wynosiła 100°C lub 150°C. Temperatura obróbki wykazała istotny wpływ na wytrzymałość na ściskanie wzdłuż włókien drewna dębu i tauari. Zależności tych nie stwierdzono w przypadku modułu przy ściskaniu wzdłuż włókien badanych gatunków drewna. Wytrzymałość na ściskanie drewna tauari zagęszczanego w temperaturze 100°C i 150°C była odpowiednio o 16% i 20% wyższa niż wytrzymałość na ściskanie drewna dębu modyfikowanego w tych samych temperaturach. Wytrzymałość na ściskanie wzdłuż włókien drewna dębu i tauari zależała liniowo od gęstości drewna i obciążenia wywieranego na próbkę.
Twórcy
autor
  • Department of Wood Science and Wood Preservation
Bibliografia
  • 1. ASTM D143:2014 Standard Test Methods for Small Clear Specimens of Timber, ASTM International, West Conshohocken, PA, USA.
  • 2. BEKHTA P., PROSZYK S., KRYSTOFIAK T. 2014a: Colour in short term thermo-mechanically densified veneer of various wood species. Eur. J. Wood Wood Prod. 72(6):785-797.
  • 3. BEKHTA P., PROSZYK S., LIS B., KRYSTOFIAK T. 2014b: Gloss of thermally densified alder (Alnus glutinosa Goertn.), beech (Fagus sylvatica L.), birch (Betulaverrucosa Ehrh.), and pine (Pinus sylvestris L.) wood veneers. Eur. J. Wood Wood Prod. 72(6):799-808.
  • 4. CANDAN Z., HIZIROGLU S., MCDONALD A.G. 2010: Surface quality of thermally compressed Douglas fir veneer. Mater. Des. 31(7):3574-3577.
  • 5. CIRAD 2012: Tauari. Tropix 7. Agricultural research for development. https://tropix.cirad.fr/.
  • 6. DOGU D., TIRAK K., CANDAN Z., UNSAL O. 2010: Anatomical investigation of thermally compressed wood panels. BioResources 5(4):2640-2663.
  • 7. FANG CH.-H., MARIOTTI N., CLOUTIER A., KOUBAA A., BLANCHET P. 2012: Densification of wood veneers by compression combined with heat and steam. Eur. J. Wood Wood Prod. 70(1-3):155-163.
  • 8. FU Q., CLOUTIER A., LAGHDIR A. 2016: Optimization of the Thermo-Hygromechanical (THM) Process for Sugar Maple Wood Densification. BioResources ll(4):8844-8859.
  • 9. GAFF M., GASPARIK M. 2015: Influence of Densification on Bending Strength of Laminated Beech Wood. BioResources 10(1):1506—1518.
  • 10. GASPARIK M., GAFF M., SAFARIKOVA L., VALLEJO C.R., SVOBODA T. 2016: Impact Bending Strength and Brinell Hardness of Densified Hardwoods. BioResources ll(4):8638-8652.
  • 11. ISO 13061-1:2014 Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 1: Determination of moisture content for physical and mechanical tests. International Organization of Standardization, Geneva, Switzerland.
  • 12. ISO 13061-2:2014 Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests. International Organization of Standardization, Geneva, Switzerland.
  • 13. ISO 13061-17:2017 Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 17: Determination of ultimate stress in compression parallel to grain. International Organization of Standardization, Geneva, Switzerland.
  • 14. KLOIBER M., DRDACKY M., TIPPNER J., HRTVNAK J. 2015: Conventional compressive strength parallel to the grain and mechanical resistance of wood against pin penetration and microdrilling established by in-situ semidestructive devices. Mater. Struct. 48(10):3217-3229.
  • 15. KOZAKIEWICZ P. 2010: Effect of temperature and moisture content on compression strength parallel to the grain of selected species of wood with variable density and anatomical structures. Treatises and Monographs. Warsaw University of Life Sciences, SGGW, Warsaw, Poland.
  • 16. KUROWSKA A., BORYSRJK P., MAMINSKI M., ZBIEC M. 2010: Veneer densification as a tool for shortening of plywood pressing time. Drvna Industrija 61(3):193-196.
  • 17. KUTNAR A., KAMKE F.A., SERNEK M. 2009: Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci. Technol. 43(l):57-68.
  • 18. KUTNAR A., KAMKE F.A. 2012: Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Sci. Technol. 46(5):953-964.
  • 19. LAINE K., RAUTKARI L., HUGHES M., KUTNAR A. 2013: Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. Eur. J. Wood Wood Prod. 71(1): 17-23.
  • 20. LAINE K., SEGERHOLM K., WALINDER M., RAUTKARI L., HUGHES M. 2016: Wood densification and thermal modification: hardness, set-recovery and micromorphology. Wood Sci. Technol. 50(5):883-894.
  • 21. LASKOWSKA A. 2017: The influence of process parameters on the density profile and hardness of surface-densified birch wood (Betula péndula Roth). BioResources 12(3):6011-6023.
  • 22. NAVI P., GIRARDET F. 2000: Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3):287-293.
  • 23. PARIL P., BRABEC M, MAÑÁK O., ROUSEK R., RADEMACHER P., CERMÁK P., DEJMAL A. 2014: Comparison of selected physical and mechanical properties of densified beech wood plasticized by ammonia and saturated steam. Eur. J. Wood Wood Prod. 72(5):583-591.
  • 24. RAUTKARI L., PROPERZI M., PICHELIN F., HUGHES M. 2010: Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci. Technol. 44(4):679-691.
  • 25. RICHTER H.G., DALLWITZ M.J. 2000: Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, Portuguese, and Spanish. Version: 25th June 2009. http://delta-intkey.com.
  • 26. SCHREPFER V., SCHWEINGRUBER F.H. 1998: Anatomical structures in reshaped press-dried wood. Holzforschung 52(6):615-622.
  • 27. TU D., SU X., ZHANG T., FAN W., ZHOU Q. 2014: Thermo-mechanical Densification of Populus tomentosa var. tomentosa with Low Moisture Content. BioResources 9(3):3846-3856.
  • 28. ÜLKER O., ÍMIRZI Ô., BURDURLU E. 2012: The effect of densification temperature on some physical and mechanical properties of Scots pine (Pinus sylvestris L.). BioResources 7(4):5581-5592.
  • 29. WAGENFÜHR R. 2007: Holzatlas [The Atlas of Wood], Fachbuchverlag Leipzig, München, Germany.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80a9344a-0606-46db-a37c-f13cc9c09faa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.