Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of present article is investigating properties of accelerometer calibration method, called automatic calibration. The research of transducer's model was conducted and chosen optimization algorithms were rated by the simulation method and also using real transducer. The aim of tests was examination of the possibility to find parameters of the transducer model considering influence of temperature and deviation of axes. Described optimal calibration process without special calibration apparatus considers also influence of temperature on acceleration measurement. Afterward, described calibration method was tested on real transducer. Obtained results show that the hybrid two-step algorithm is suitable to the multiaxial transducers calibration. In the research, accelerometer as triaxial transducer was chosen and subjected to tests and the results of simulation was recorded in the MATLAB workspace. From existing estimation, three algorithms were chosen: the quasi-Newton, simplex (Nelder-Mead), and Levenberg-Marquard. The experimental part of the calibration utilized the idea of using existing and known constant vector of the measured value like gravitational acceleration and magnetic field. Calibration with temperature compensation of real transducer was presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
299--308
Opis fizyczny
Bibliogr. 14 poz., tab.
Twórcy
autor
- Rzeszow University of Technology Department of Avionics and Control Systems Powstańców Warszawy Av. 8, 35-959 Rzeszow, Poland tel.: +48 17 8651783, fax: +48 17 8544319
autor
- Rzeszow University of Technology Department of Avionics and Control Systems Powstańców Warszawy Av. 8, 35-959 Rzeszow, Poland tel.: +48 17 8651783, fax: +48 17 8544319
Bibliografia
- [1] Titterton, D., Weston, J., Strapdown Inertial Navigation Technology, Radar Sonar and Navigation Series, 153-186, 242-259, 309-332, 2004.
- [2] Woodman, O., An introduction to inertial navigation, University of Cambridge, 2007.
- [3] Krohn, A., Beigl, M., Decker, C., Kochendorfer, U., Robinson, P., Zimmer, T., Inexpensive and Automatic Calibration for Acceleration Sensors, Lecture Notes in Computer Science, Vol. 3598, pp. 245-258, 2005.
- [4] Kian, S. T., Awad, M., Dehghami, A., Moser, D., Zahedi, S., Triaxial Accelerometer Static Calibration, World Congress on Engineering (WCE), 6-8 July 2011, London, UK 2011.
- [5] Levy, S., McPherson, A., Hobbs, E., Calibration of Accelerometers, RP1930, National Burea of Standards, Vol. 41, 1948.
- [6] Lukowicz, P., Junker, H., Troester, G., Automatic Calibration of Body Worn Acceleration Sensors, Pervasive Computing, pp. 176-181, 2004.
- [7] Lotters, J., Schipper, J., Veltink, P., Olthuis, W., Bergveld, P., Procedure for in-use calibration of triaxial accelerometers in medical applications, Sensors and Actuators, pp. 221-228, 1998.
- [8] Frosio, I., Pedersini, F., Borghese, A., Autocalibration od MEMS Accelerometers, IEEE Transactions on Instrumentation and Measurement, Vol. 58, pp. 2034-2041, 2009.
- [9] Gietzelt, M., Wolf, K. H., Marschollek, M., Haux, R., Performance comparison of accelerometer calibration algorithms based on 3D-ellipsoid fitting methods, Computer Methods and Programs in Biomedicine, pp. 62-71, 2013.
- [10] Wit, R., Metody programowania nieliniowego (in Polish), WNT, Warszawa 1986.
- [11] Brandt, S., Analiza danych (in Polish), PWN, Warszawa 1998.
- [12] Pieniążek, J., Cieciński, P., Measurement device with learned sensor, Metrology for Aerospace (MetroAeroSpace), 2014 IEEE, pp. 260-264, 2014.
- [13] Analog Devices, ADXL330 datasheet, 2007.
- [14] Grądek, P., Methodology of triaxial accelerometer’s calibration (in Polish), M.Sc. thesis, Rzeszow University of Technology, Rzeszow 2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-809bcab7-836c-4cad-91fa-19f1325a66d9