PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S‑wave velocity field in landslide subsurface

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents a comparison of data acquisition, processing and interpretation between passive seismic interferometry (SI) and active multichannel analysis of surface waves (MASW) methods, both using surface waves for estimation S-wave velocity field. Measurements have been taken in the same geological engineering conditions on Just-Tegoborze landslide on the south of Poland. This comparison study has an important meaning from landslide hazard evaluation point of view. The landslide is located in Magura Nappe in Outer (Flysch) Carpathians. SI was based on registration of local seismic noise generated by high traffic on the state road which intersects the landslide. The main processing step was cross-correlation of seismic noise between every pair of receivers. It led to obtain series of empirical Green’s functions for Rayleigh surface wave. However, in MASW method, seismic energy was released by an impact of 5 kg sledgehammer in a metal plate. Both methods included analysis of dispersion curves of Rayleigh surface wave. The inversion of picked fundamental modes was applied using genetic algorithm and resulted in 1D S-wave velocity models. The last step of interpretation included model visualization as the 2D S-wave velocity sections for studied profiles. Both MASW and SI methods allowed to estimate S-wave velocity field in Just-Tegoborze landslide subsurface. Dispersion images obtained from both methods provided similar phase velocity and frequency ranges. On S-wave velocity sections, the greater depth range was observed for SI method; however, lateral resolution was better for MASW. Slip surfaces in colluvial layer were not observed on either SI or MASW S-wave velocity sections. Only results obtained from SI allowed to distinguish probable slip surface located deeper, i.e. on the contact with less weathered flysch bedrock.
Czasopismo
Rocznik
Strony
1875--1883
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7A, 31‑261 Krakow, Poland
  • Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7A, 31‑261 Krakow, Poland
  • Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7A, 31‑261 Krakow, Poland
Bibliografia
  • 1. Bièvre G, Jongmans D, Winiarski T, Zumbo V (2012) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves Area, French Alps). Hydrol Process 26(14):2128–2142. https://doi.org/10.1002/hyp.7986
  • 2. Bogoslovsky VA, Ogilvy AA (1977) Geophysical methods for the investigation of landslides. Geophysics 42:562–571. https://doi.org/10.1190/1.1440727
  • 3. Caris JPT, Van Asch THWJ (1991) Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps. Eng Geol 31:249–276. https://doi.org/10.1016/0013-7952(1)90011-9
  • 4. Cheng F, Xia J, Xu Y, Xu Z, Pan Y (2015) A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves. J Appl Geophys 117:126–135. https://doi.org/10.1016/j.jappgeo.2015.04.005
  • 5. Chmiel M, Mordret A, Boué P, Brenguier F, Lecocq T, Courbis R, Hollis D, Campman X, Romijn R, Van der Veen W (2019) Ambient noise multimode Rayleigh and Love wave tomography to determine the shear velocity structure above the Groningen gas field. Geophys J Int 218(3):1781–1795. https://doi.org/10.1093/gji/ggz237
  • 6. Czarny R, Pilecki Z, Nakata N, Pilecka E, Krawiec K, Harba P, Barnaś M (2019) 3D S-wave velocity imaging of a subsurface disturbed by mining using ambient seismic noise. Eng Geol 251:115–127. https://doi.org/10.1016/j.enggeo.2019.01.017
  • 7. Dal Moro G (2015) Surface wave analysis for near surface applications. Elsevier, Amsterdam. ISBN 978-0-12-800770-9
  • 8. Dal Moro G, Pipan M, Gabrielli P (2007) Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J Appl Geophys 61:39–55. https://doi.org/10.1016/j.jappgeo.2006.04.002
  • 9. Eikmeier CN, Prado RL, Taioli F (2016) Combined use of active and passive surface waves for shallow subsurface investigation in noisy urban area of São Paulo City, Brazil. Revista Brasileira de Geofísica 34(1):13–23. https://doi.org/10.22564/rbgf.v34i1.648
  • 10. Grandjean G (2006) Imaging subsurface objects by seismic P-wave tomography: numerical and experimental validations. Near Surf Geophys 4:275–283. https://doi.org/10.3997/1873-0604.2005051
  • 11. Grit M, Kanli AI (2016) Integrated seismic survey for detecting landslide effects on high speed rail line at Istanbul-Turkey. Open Geosci 8:161–173. https://doi.org/10.1515/geo-2016-0017
  • 12. Harba P, Pilecki Z (2017) Assessment of time-spatial changes of shear wave velocities of flysch formation prone to mass movements by seismic interferometry with the use of ambient noise. Landslides 14:1225–1233. https://doi.org/10.1007/s10346-016-0779-2
  • 13. Huntley D, Bobrowsky P, Hendry M, Macciotta R, Best M (2019) Multi-technique geophysical investigation of a very slow-moving landslide near Ashcroft, British Columbia, Canada. J Environ Eng Geophys 24(1):87–110. https://doi.org/10.2113/JEEG24.1.87
  • 14. Hussain Y, Hertinez-Carvajal H, Cárdenas-Soto M, Uagoda R, Soares J E, Martino S (2017) Seasonal monitoring of hydrological stresses developed by varying degree of rainfall induced pore-pressures using noise data. In: 15th International congress of the Brazilian geophysical society at Rio de Janeiro. SBGf—Sociedade Brasileira de Geofísica 2017, pp 1727–1729. https://doi.org/10.1190/sbgf2017-340
  • 15. Isakow Z, Siciński K, Pilecki Z, Marcak H, Sierodzki P, Kuciara I, Czarny R, Harba P, Chamarczuk M, Kubańska A, Juzwa J (2015) In: Isakow Z, Pilecki Z, Kubańska A (eds) System LOFRES of passive seismic using seismic noise. ITI EMAG, Katowice (in Polish with English abstract). ISBN 978-83-63674-23-6
  • 16. Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bulletin de la Société Géologique de France 178(2):101–112. https://doi.org/10.2113/gssgfbull.178.2.101
  • 17. Jongmans D, Bièvre G, Renalier F, Schwartz S, Beaurez N, Orengo Y (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng Geol 109:45–56. https://doi.org/10.1016/j.enggeo.2008.10.005
  • 18. Kanli AI (2010) Integrated approach for surface-wave analysis from near-surface to bedrock. In: Bradford JH, Klaus H, Miller RD (eds) Advances in near-surface seismology and ground-penetrating radar. Society of Exploration Geophysicists, Tulsa, pp 461–476
  • 19. Kanli AI, Tildy P, Prónay Z, Pinar A, Hermann L (2006) V30S mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophys J Int 165:223–235. https://doi.org/10.1111/j.1365-246X.2006.02882.x
  • 20. Kanli AI, Kang T-S, Pinar A, Tildy P, Prónay Z (2008) A systematic geophysical approach for site response of the Dinar Region, Southwestern Turkey. J Earthq Eng 12(S2):165–174. https://doi.org/10.1080/13632460802013966
  • 21. Kogut JP, Pilecka E, Szwarkowski D (2018) Analysis of landslide effects along a road located in the Carpathian flysch. Open Geosci 10(1):517–531. https://doi.org/10.1515/geo-2018-0041
  • 22. Larose E, Carriere S, Voisin C, Bottelin P, Baillet L, Guéguen P, Walter F, Jongmans D, Guillier B, Garambois S, Gimbert F, Massey Ch (2015) Environmental seismology: what can we learn on earth surface processes with ambient noise? J Appl Geophys 116:62–74. https://doi.org/10.1016/j.jappgeo.2015.02.001
  • 23. Mainsant G, Larose E, Brönnimann C, Jongmans D, Michoud C, Jaboyedoff M (2012) Ambient seismic noise monitoring of a clay landslide: toward failure prediction. J Geophys Res Earth Surf 117:1–12. https://doi.org/10.1029/2011JF002159
  • 24. Mc Cann DM, Forster A (1990) Reconnaissance geophysical methods in landslide investigations. Eng Geol 29:59–78. https://doi.org/10.1016/0013-7952(90)90082-C
  • 25. Park ChB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64(3):800–808. https://doi.org/10.1190/1.1444590
  • 26. Pilecki Z (2008) The role of geophysical methods in the estimation of sinkhole threat in the post-mining areas of shallow exploitation in the Upper Silesian Coal Basin, Poland. Gospodarka Surowcami Mineralnymi - Mineral Resources Management 24(3/1):27–40
  • 27. Pilecki Z (2017) Basic principles for the identification of landslides using geophysical methods. E3S Web Conf 24:01001. https://doi.org/10.1051/e3sconf/20172401001
  • 28. Pilecki Z, Harba P (2015) Structure and properties of a landslide investigated with seismic interferometry using high-frequency seismic noise—preliminary results (in Polish with English abstract). Bulle Miner Energy Econ Res Inst Pol Acad Sci 89:63–76
  • 29. Pilecki Z, Ziętek J, Pilecka E, Karczewski J, Kłosiński J (2007) The effectiveness of recognizing of failure surface of the Carpathian flysch landslide using wave methods. In: Proceedings of 13th European meeting of environmental and engineering geophysics “Near Surface 2007”, EAGE, 3–5 Sept 2007, Istanbul, Turkey. ISBN: 978-1-62993-796-0:256-260
  • 30. Pilecki Z, Kłosiński J, Pilecka E, Karczewski J, Ziętek J (2008) Influence of water saturation on landslide discontinuities borders recognition by wave methods. Miner Resour Manag 24(2/3):427–444
  • 31. Pilecki Z, Isakow Z, Czarny R, Pilecka E, Harba P, Barnaś M (2017) Capabilities of seismic and georadar 2D/3D imaging of shallow subsurface of transport route using the Seismobile system. J Appl Geophys 143:31–41. https://doi.org/10.1016/j.jappgeo.2017.05.016
  • 32. Pilz M, Parolai S, Bindi D, Saponaro A, Abdybachaev U (2013) Combining seismic noise techniques for landslide characterization. Pure appl Geophys 171:1729–1745. https://doi.org/10.1007/s00024-013-0733-3
  • 33. Renalier F, Bièvre G, Jongmans D, Campillo M, Bard P-Y (2010a) Clayey landslide investigations using active and passive VS measurements. Advances in near-surface seismology and ground-penetrating radar. Soc Explor Geophys 15:397–413. https://doi.org/10.1190/1.9781560802259.ch24
  • 34. Renalier F, Jongmans D, Campillo M, Bard P-Y (2010b) Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. J Geophys Res 115:1–14. https://doi.org/10.1029/2009JF001538
  • 35. Salamanca A, Gutiérrez E, Montes L (2017) Optimization of a seismic inversion genetic algorithm. In: Conference: SEG technical program expanded abstracts 2017. https://doi.org/10.1190/segam2017-17795633.1
  • 36. Samyn K, Travelletti J, Bitri A, Grandjean G, Malet J-P (2012) Characterization of a landslide geometry using 3D seismic refraction traveltime tomography: the La Valette landslide case history. J Appl Geophys 86:120–132. https://doi.org/10.1016/j.jappgeo.2012.07.014
  • 37. Stanisz J, Pilecki Z (2018) Preliminary results of pore pressure profiling on the Tegoborze-Just landslide. E3S Web of Conferences 66:02001. https://doi.org/10.1051/e3sconf/20186602001
  • 38. Szreder Z, Pilecki Z, Kłosiński J (2008) Effectiveness of recognition of exploitation edge influence with the help of profiling of attenuation and velocity of seismic wave. Gospodarka Surowcami Mineralnymi - Mineral Resources Management 24(2/3):215–226
  • 39. Uhlemann S, Hagedorn S, Dashwood B, Maurer H, Gunn D, Dijkstra T, Chambers J (2016) Landslide characterization using P- and S-wave seismic refraction tomography—the importance of elastic moduli. J Appl Geophys 134:64–76. https://doi.org/10.1016/j.jappgeo.2016.08.014
  • 40. Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry. Geophysics 71(4):33–46. https://doi.org/10.1190/1.2213955
  • 41. Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz Frequencies. Phys Rev Lett 87:134301. https://doi.org/10.1103/PhysRevLett.87.134301
  • 42. Whiteley JS, Chambers JE, Uhlemann S, Wilkinson PB, Kendall JM (2019) Geophysical monitoring of moisture-induced landslides: a review. Rev Geophys 57:1–40. https://doi.org/10.1029/2018RG000603
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8095d48c-969a-4aba-834f-1a3a0a72a9b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.