PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of nanobubbles enhanced reverse anionic flotation of a midlow grade phosphate ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The reverse anionic flotation is commonly used to upgrade the mid-low grade phosphate ore in China. The mineral characterization of raw ore shows that carbonate and phosphate minerals combined with fine intergrowth, difficulty in upgrading. Flotation using nanobubbles (NBs) can significantly enhance the flotation efficiency of fine particles of minerals. To research the effect of NBs on the flotation process of this phosphate ore, two flotation tests with and without NBs were compared. The results show that the MgO removal had an increment of 10% in the case of NBs flotation versus conventional flotation in the approximate grade and recovery of P2O5. The foam product of NBs flotation had smaller dimensions than the conventional flotation. NBs enhanced the contact angle on dolomite surface from 45.8° to 64.5°, and increases the d50 of dolomite from 20.49 µm to 30.43 µm.
Rocznik
Strony
113--125
Opis fizyczny
Bibliogr. 57 poz., rys., kolor., tab., wykr.
Twórcy
autor
  • College of Mining, Guizhou University, Guiyang, PR China
autor
  • Guizhou Academy of Science, Guiyang, PR China
  • National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang, PR China
  • Guizhou Key Laboratory of Comprehensive Utilization of Non-metallic Mineral Resources, Guiyang, PR China
Bibliografia
  • ABOUZEID A.M., 2008. Physical and thermal treatment of phosphate ores - An overview. International Journal of Mineral Processing, 85, 59-84.
  • ABOUZEID A.Z.M., NEGM A.T., ELGILLANI D.A., 2009. Upgrading of calcareous phosphate ores by flotation: Effect of ore characteristics. International Journal of Mineral Processing, 90, 81-89.
  • AHMADI R., KHODADADI D.A., ABDOLLAHY M., FAN M., 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology, 24, 559-566.
  • ALHESHIBRI M., AL BAROOT A., SHUI L., ZHANG M., 2021. Nanobubbles and nanoparticles. Current Opinion in Coloids and Interface Science, 55, 101470.
  • ALHESHIBRI M., QIAN J., JEHANNIN M., CRAIG V.S.J., 2016. A History of Nanobubbles. Langmuir, 32, 11086-11100.
  • BOULOS T.R., YEHIA A., IBRAHIM S.S., YASSIN K.E., 2014. A modification in the flotation process of a calcareous–siliceous phosphorite that might improve the process economics. Minerals Engineering, 69, 97-101.
  • CALGAROTO S., AZEVEDO A., RUBIO J., 2015. Flotation of quartz particles assisted by nanobubbles. International Journal of Mineral Processing, 137, 64-70.
  • CALGAROTO S., WILBERG K.Q., RUBIO J., 2014. On the nanobubbles interfacial properties and future applications in flotation. Minerals Engineering, 60, 33-40.
  • CAO Q., ZOU H., CHEN X., YU X., 2020. Interaction of sulfuric acid with dolomite (104) surface and its impact on the adsorption of oleate anion: a DFT study. Physicochemical Problems of Mineral Processing, 56, 34-42.
  • CHANG G., XING Y., ZHANG F., YANG Z., LIU X., GUI X., 2020. Effect of Nanobubbles on the Flotation Performance of Oxidized Coal. ACS Omega, 5, 20283-20290.
  • CHIPAKWE V., JOLSTERÅ R., CHELGANI S.C., 2021. Nanobubble-Assisted Flotation of Apatite Tailings: Insights on Beneficiation Options. ACS Omega, 6, 13888-13894.
  • COUTO H., NUNES D.G., NEUMANN R., FRAN A S., 2009. Micro-bubble size distribution measurements by laser diffraction technique. Minerals Engineering, 22, 330-335.
  • DING S., XING Y., ZHENG X., ZHANG Y., CAO Y., GUI X., 2020. New Insights into the Role of Surface Nanobubbles in Bubble-Particle Detachment. Langmuir, 36, 4339-4346.
  • EL-MIDANY A., EL-SHALL H., STANA R., 2009. Mechanisms involved in reactive flotation of dolomite. Mining Metallurgy & Exploration, 26, 94-100.
  • ETCHEPARE R., OLIVEIRA H., NICKNIG M., AZEVEDO A., RUBIO J., 2017. Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Minerals Engineering, 112, 19-26.
  • FAN M., TAO D., HONAKER R., LUO Z., 2010. Nanobubble generation and its applications in froth flotation (part III): specially designed laboratory scale column flotation of phosphate. Mining Science and Technology (China), 20, 317-338.
  • FAN M., TAO D., ZHAO Y., HONAKER R., 2013. Effect of nanobubbles on the flotation of different sizes of coal particle. Minerals and Metallurgical Processing, 30, 157-161.
  • HAMPTON M.A., NGUYEN A.V., 2010. Nanobubbles and the nanobubble bridging capillary force. Afvances in Colloid and Interface Science, 154, 30-55.
  • HOANG D.H., KUPKA N., PEUKER U.A., RUDOLPH M., 2018. Flotation study of fine grained carbonaceous sedimentary apatite ore - Challenges in process mineralogy and impact of hydrodynamics. Minerals Engineering, 121, 196-204.
  • HUANG W., LIU W., CHI X., RAO F., 2021. Study of Combined Collector in Reverse Flotation for Magnesium Removal of Phosphate Rock. Non-Metallic Mines, 44, 56-58.
  • HUANG W., ZHANG Q., YE J., WANG X., DU J., 2014. Effect of combined depressants on reverse flotation of calcium magnesium phosphate ore with mid-low grade. Industrial Minerals & Processing, 43, 1-4.
  • KNÜPFER P., DITSCHERLEIN L., PEUKER U.A., 2017. Nanobubble enhanced agglomeration of hydrophobic powders. Colloids and Surfaces A., 530, 117-123.
  • LEI W., ZHANG M., ZHANG Z., ZHAN N., FAN R., 2020. Effect of bulk nanobubbles on the entrainment of kaolinite particles in flotation. Powder Technology, 362, 84-89.
  • LEISTNER T., EMBRECHTS M., LEIßNER T., CHEHREH CHELGANI S., OSBAHR I., MÖCKEL R., PEUKER U.A., RUDOLPH M., 2016. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Minerals Engineering, 96-97, 94-98.
  • LI C., XU M., XING Y., ZHANG H., PEUKER U.A., 2020. Efficient separation of fine coal assisted by surface nanobubbles. Separation and Purification Technology, 249, 117163.
  • LI X., ZHANG Q., HOU B., YE J., MAO S., LI X., 2017. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms. Powder Technology, 318, 224-229.
  • LIU W., 2013. Application of acid waste water on phosphate beneficiation. Industrial Minerals & Processing, 42, 36-37.
  • LOHSE D., ZHANG X., 2015. Pinning and gas oversaturation imply stable single surface nanobubbles. Physical Review E, 91, 31003.
  • MIETTINEN T., RALSTON J., FORNASIERO D., 2010. The limits of fine particle flotation. Minerals Engineering, 23, 420-437.
  • NAZARI S., HASSANZADEH A., 2020. The effect of reagent type on generating bulk sub-micron (nano) bubbles and flotation kinetics of coarse-sized quartz particles. Powder Technology, 374, 160-171.
  • NAZARI S., SHAFAEI S.Z., SHAHBAZI B., CHELGANI S.C., 2018. Study relationships between flotation variables and recovery of coarse particles in the absence and presence of nanobubble. Colloids and Surfaces A., 559, 284-288.
  • OLSZOK V., RIVAS-BOTERO J., WOLLMANN A., BENKER B., WEBER A.P., 2020. Particle-induced nanobubble generation for material-selective nanoparticle flotation. Colloids and Surfaces A., 592, 124576.
  • PENG H., BIRKETT G.R., NGUYEN A.V., 2015. Progress on the Surface Nanobubble Story: What is in the bubble? Why does it exist? Advances in Colloid and Interface Science, 222, 573-580.
  • POURKARIMI Z., REZAI B., NOAPARAST M., 2018. Nanobubbles effect on the mechanical flotation of phosphate ore fine particles. Physicochemical Problems of Mineral Processing, 54, 278-292.
  • ROSA A.F., RUBIO J., 2018. On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals. Minerals Engineering, 127, 178-184.
  • RUAN Y., HE D., CHI R., 2019. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals. 9, 253.
  • SEDDON J.R.T., BLIZNYUK O., KOOIJ E.S., POELSEMA B., ZANDVLIET H.J.W., LOHSE D., 2010. Dynamic Dewetting through Micropancake Growth. Langmuir, 26, 9640-9644.
  • SIS H., CHANDER S., 2003. Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants. Minerals Engineering, 16, 587-595.
  • SIS H., CHANDER S., 2003. Reagents used in the flotation of phosphate ores: a critical review. MINERALS ENGINEERING. 16, 577-585.
  • SOBHY A., TAO D., 2013. Nanobubble column flotation of fine coal particles and associated fundamentals. International Journal of Mineral Processing, 124, 109-116.
  • SURVEY U.S.G., 2021. Mineral commodity summaries 2021 No. 978-1-4113-4398-6.
  • TAO D., SOBHY A., 2019. Nanobubble effects on hydrodynamic interactions between particles and bubbles. Powder Technology, 346, 385-395.
  • TAO D., WU Z., 2020. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms. Powder Technology, 379, 12-25.
  • TAO D., YU S., ZHOU X., HONAKER R.Q., PAREKH B.K., 2008. Picobubble Column Flotation of Fine Coal. International Journal of Coal Preparation and Utilization. 28, 1-14.
  • WANG L., PENG Y., RUNGE K., BRADSHAW D., 2015. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering, 70, 77-91.
  • WANG X., 2018. Study on the Property of Nanobubbles by Advanced Nano-detection Techniques, University of Chinese Academy of Sciences.
  • WANG X., ZHANG Q., 2020. Insight into the Influence of Surface Roughness on the Wettability of Apatite and Dolomite. Minerals. 10, 114.
  • WANG Y., PAN Z., LUO X., QIN W., JIAO F., 2019. Effect of nanobubbles on adsorption of sodium oleate on calcite surface. Minerals Engineering, 133.
  • XIAO W., KE S., QUAN N., ZHOU L., WANG J., ZHANG L., DONG Y., QIN W., QIU G., HU J., 2018. The Role of Nanobubbles in the Precipitation and Recovery of Organic-Phosphine-Containing Beneficiation Wastewater. Langmuir,34, 6217-6224.
  • XIE J., ZHANG Q., 2021. Study on the bonding characteristics of Ca sites in fluorapatite based on density functional theory. Guizhou Science. 39, 89-96.
  • XU J., SUN Z., BA Z., ZOU Y., 2008. Theoretical analysis of using acidic waste water to float phosphate rock and its practice. Industrial Minerals and Processing, 1-3.
  • YE J., ZHANG Q., LI X., WANG X., SHEN Z., MAO S., 2020. In-situ Investigation of Hydrophobic Agglomeration of Fine Dolomite. Mining and Metallurgical Engineering. 40, 39-42.
  • ZHANG X., WANG Q., WU Z., TAO D., 2020. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles. International Journal of Minerals Metallurgy and Materials. 27, 152-161.
  • ZHOU W., CHEN H., OU L., SHI Q., 2016. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation. International Journal of Mineral Processing, 157, 236-240.
  • ZHOU W., NIU J., XIAO W., OU L., 2019. Adsorption of bulk nanobubbles on the chemically surface-modified muscovite minerals. Ultrasonic Sonochemistry, 51, 31-39.
  • ZHOU W., WU C., LV H., ZHAO B., LIU K., OU L., 2020. Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation. Applied Surface Science, 508.
  • ZOU H., CAO Q., LIU D., YU X., LAI H., 2019. Surface Features of Fluorapatite and Dolomite in the Reverse Flotation Process Using Sulfuric Acid as a Depressor. Minerals. 9, 33
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-808e8ee0-d9b4-4363-a57f-dc7137224e6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.