PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic properties of dilute Co-Fe solid solutions studied by 57Fe Mössbauer spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2016 (11th ; 19-22 June 2016 ; Radom-Turno, Poland)
Języki publikacji
EN
Abstrakty
EN
The Co1–xFex alloys where x ranges from 0.01 to 0.06 were measured at room temperature using transmission Mössbauer spectroscopy (TMS). The analysis of the obtained data allowed the determination of the short-range order (SRO), the binding energy Eb between two iron atoms in the studied materials using the extended Hrynkiewicz-Królas idea and the enthalpy of solution HCo-Fe of Fe in Co. The results showed that the Fe atoms dissolved in a Co matrix interact repulsively and the estimated value of HCo-Fe = –0.166(33) eV/atom. Finally, values of the enthalpy of solution were used to predict the enthalpy of mixing for the Co-Fe system. These findings were compared with corresponding data given in the literature, which were derived from calorimetric experiments and from the cellular atomic model of alloys described by Miedema.
Czasopismo
Rocznik
Strony
109--115
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Institute of Experimental Physics, University of Wroclaw, 9 M. Borna Sq., 50-204 Wrocław, Poland, Tel.: +48 71 375 9336, Fax: +48 71 328 7365
autor
  • Institute of Experimental Physics, University of Wroclaw, 9 M. Borna Sq., 50-204 Wrocław, Poland, Tel.: +48 71 375 9336, Fax: +48 71 328 7365
Bibliografia
  • 1. Sourmail, T. (2005). Near equiatomic FeCo alloys: constitution, mechanical and magnetic properties. Prog. Mater. Sci., 50, 816–880. DOI: 10.1016/j.pmatsci.2005.04.001.
  • 2. Yu, R. H., Basu, S., Ren, L., Zhang, Y., Parvizi-Majidi, A., Unruh, K. M., & Xiao, J. Q. (2000). High temperature soft magnetic materials: FeCo alloys and composites. IEEE Trans. Magn., 36, 3388–3393. DOI: 10.1109/20.908809.
  • 3. Fish, G. E. (1990). Soft magnetic materials. Proc. IEEE 78, 947–972. DOI: 10.1109/5.56909.
  • 4. Fingers, R. T., & Rubertus, C. S. (2000). Application of high temperature magnetic materials. IEEE Trans. Magn., 36, 3373–3375. DOI: 10.1109/20.908805.
  • 5. Sundar, R. S., & Deevi, S. C. (2005). Soft magnetic FeCo alloys: alloy development, processing, and properties. Int. Mater. Rev., 50, 157–192. DOI:10.1179/174328005X14339.
  • 6. Turchanin, M. A., Dreval, L. A., Abdulov, A. R., & Agraval, P. G. (2011). Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu–Fe–Co system. Powder Metall. Met. Ceram., 50, 98–116.DOI: 10.1007/s11106-011-9307-z.
  • 7. Ohnuma, I., Enoki, H., Ikeda, O., Kainuma, R., Ohtani, H., Sundman, B., & Ishida, K. (2002). Phase equilibria in the Fe–Co binary system. Acta Mater., 50, 379–393. DOI: 10.1016/S1359-6454(01)00337-8.
  • 8. Rodriguez, J. E., & Matson, D. M. (2015). Thermodynamic modeling of the solidification path of levitated Fe–Co alloys. Calphad-Comput. Coupling Ph. Diagrams Thermochem., 49, 87–100. DOI: http://dx.doi.org/10.1016/j.calphad.2015.03.001.
  • 9. Konieczny, R., Idczak, R., & Chojcan, J. (2015). Interactions between osmium atoms dissolved in iron observed by the 57Fe Mössbauer spectroscopy. Nukleonika, 60(1), 75–79. DOI: 10.1515/nuka-2015-0016.
  • 10. Konieczny, R., Idczak, R., & Chojcan, J. (2013). Mössbauer studies of interactions between titanium atoms dissolved in iron. Hyperfine Interact., 219, 121–127. DOI: 10.1007/s10751-012-0653-0.
  • 11. Idczak, R., Konieczny, R., & Chojcan, J. (2013). Short-range order in iron alloys studied by 57Fe Mössbauer spectroscopy. Solid State Commun., 159, 22–25. DOI: 10.1016/j.ssc.2013.01.015.
  • 12. Chojcan, J. (2004). A dilute-limit heat of solution of 3d transition metals in iron studied with 57Fe Mössbauer spectroscopy. Hyperfine Interact., 156/157, 523–529. DOI: 10.1007/978-1-4020-2852-6_76.
  • 13. Konieczny, R., Idczak, R., Elsner, J., & Chojcan, J. (2012). An enthalpy of solution of platinum in iron studied by 57Fe Mössbauer spectroscopy. Hyperfine Interact., 206, 119–124. DOI: 10.1007/s10751-011-0480-8.
  • 14. Idczak, R., Konieczny, R., & Chojcan, J. (2013). Thermodynamic properties of Au-Fe alloys studied with 57Fe Mössbauer spectroscopy. Nukleonika, 58(1), 93–97.
  • 15. Idczak, R., Konieczny, R., & Chojcan, J. (2012). Study of defects in Fe-Re and Fe-Mo alloys by the Mössbauer and positron annihilation spectroscopies. Solid State Commun., 152, 1924–1928. DOI: 10.1016/j.ssc.2012.07.027.
  • 16. Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., & Kelley, K. K. (1973). Selected values of thermodynamic properties of binary alloys. Metals Park, Ohio: American Society for Metals.
  • 17. Swartzendruber, L. J., Itkin, V. P., & Alcock, C. B. (1993). Phase diagrams of binary iron alloys. Materials Park, Ohio: Materials Information Society.
  • 18. Sluiter, M. H. F., & Kawazoe, Y. (2002). Prediction of the mixing enthalpy of alloys. Europhys. Lett., 57, 526–532. DOI: http://dx.doi.org/10.1209/epl/i2002-00493-3.
  • 19. Vincze, I., & Campbell, I. A. (1973). Mössbauer measurements in iron base alloys with transition metals. J. Phys. F-Metal Phys., 3, 647–663. DOI: http://dx.doi.org/10.1088/0305-4608/3/3/023.
  • 20. Falepin, A., Cottenier, S., Comrie, C. M., & Vantomme, A. (2006). Interpreting Mössbauer spectra reflecting an infinite number of sites: An application to Fe1-xSi synthesized by pulsed laser annealing. Phys. Rev. B, 74, 184108. DOI: 10.1103/PhysRevB.74.184108.
  • 21. Watanabe, D., Sekiguchi, T., Tanaka, T., Takahashi, M., Wakiyama, T., & Takahashi, M. (1983). Magnetic domains in hcp and dhcp Co-Fe alloys studied by 1 MV Lorentz electron microscopy. J. Magn. Magn. Mater., 31/34, 973–975. DOI: 10.1016/0304-8853(83)90759-X.
  • 22. Johnson, C. E., Ridout, M. S., Cranshaw, T. E., & Madsen, P. E. (1961). Hyperfine field and atomic moment of iron in ferromagnetic alloys. Phys. Rev. Lett., 6, 450–451. DOI: 10.1103/PhysRevLett.6.450.
  • 23. Rao, G. N. (1985). Table of hyperfine fields for impurities in Fe, Co, Ni, Gd and Cr. Hyperfine Interact., 24/26, 1119–1194. DOI: 10.1007/BF02354655.
  • 24. Rodriguez, J. E., & Matson, D. M. (2015). Thermodynamic modeling of the solidification path of levitated Fe-Co alloys. Calphad-Comput. Coupling Ph. Diagrams Thermochem., 49, 87–100. DOI: 10.1016/j.calphad.2015.03.001.
  • 25. Chojcan, J. (1998). Interaction between impurity atoms of 3d transition metals dissolved in iron. J. Alloy. Compd., 264, 50–53. DOI: 10.1016/S0925-8388(97)00264-8.
  • 26. Królas, K. (1981). Correlation between impurity binding energies and heat of formation of alloys. Phys. Lett. A, 85, 107–110. DOI: 10.1016/0375-601(81)90235-8.
  • 27. Miedema, A. R. (1992). Energy effects and charge transfer in metal physics, modeling in real space.Physica B, 182, 1–17. DOI: 10.1016/0921-4526(92)90565-A.
  • 28. Cowley, J. M. (1960). Short- and long-range order parameters in disordered solid solutions. Phys. Rev.,120, 1648–1657. DOI: 10.1103/PhysRev.120.1648.
  • 29. Idczak, R., Konieczny, R., Konieczna, Ż., & Chojcan, J. (2011). An enthalpy of solution of cobalt and nickel in iron studied with 57Fe Mössbauer spectroscopy. Acta Phys. Pol. A, 119, 37–40. DOI: 10.12693/APhysPolA. 119.37.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-808baff6-e03c-4450-82ed-7e2c686deb89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.