Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a strategy of the cooling parameters selection in the process of continuous steel casting. Industrial tests were performed at a slab casting machine at the Arcelor Mittal Poland Unit in Krakow. The tests covered 55 heats for 7 various steel grades. Based on the existing casting technology a numerical model of the continuous steel casting process was formulated. The numerical calculations were performed for three casting speeds - 0.6, 0.8 and 1 m min-1. An algorithm was presented that allows us to compute the values of the heat transfer coefficients for the secondary cooling zone. The correctness of the cooling parameter strategy was evaluated by inspecting the shell thickness, the length of the liquid core and the strand surface temperature. The ProCAST software package was used to construct the numerical model of continuous casting of steel.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
329--334
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wzory
Twórcy
autor
- AGH University of Science and Technology in Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Kraków, Polska.
autor
- AGH University of Science and Technology in Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Kraków, Polska.
Bibliografia
- [1] B. G. Thomas, L. Zhang, Metallurgical and Materials Transactions B 33B, 795 - 812 (2002).
- [2] D. Mazumdar, J.W. Evans, Modeling of steelmaking process, CRC Press, New York, (2010).
- [3] M. Warzecha, T. Merder, Metalurgija 52, 153-156 (2013).
- [4] A. Cwudziński, J. Jowsa, Archives of Metallurgy and Materials 57 (1), 297-301 (2012)
- [5] K. Miłkowska-Piszczek, J. Falkus, Metalurgija 53 (4), 571-573 (2014).
- [6] Z. Malinowski, M. Rywotycki, Archives of Civil and Mechanical Engineering 9, 59-73 (2009).
- [7] A. Cwudziński, Archives of Metallurgy And Materials 56 (1), 611-618 (2012).
- [8] K. Michalek, K. Gryc, M. Tkadleckova, D. Bocek, Archives of Metallurgy and Materials 57 (1), 291-296 (2012).
- [9] A. Cwudziński, Steel Research International 85 (4), 623-631 (2014).
- [10] J. Falkus, K.Miłkowska-Piszczek, Materiali in Tehnologije 49 (6), 903-912 (2015).
- [11] M. Rywotycki, Z. Malinowski, J. Giełżecki, A. Gołdasz, Archives of Metallurgy and Materials 59 (2), 487-492 (2014).
- [12] A. Buczek, A. Burbelko, P. Drożdż, M. Dziarmagowski, J. Falkus, M. Karbowniczek, Tomasz Kargul, K. Miłkowska- Piszczek, M. Rywotycki, K. Sołek, W. Ślęzak, T. Telejko, L. Trębacz, E. Wielgosz, Modelowanie procesu ciągłego odlewania stali - monografia, Radom (2012)
- [13] K. Miłkowska-Piszczek, J. Falkus, Archives of Metallurgy and Materials 60 (1), 251- 256 (2015).
- [14] K. Miłkowska-Piszczek, M. Rywotycki, J. Falkus, K. Konopka, Archives of Metallurgy and Materials, 60 (1), 239- 244 (2015).
- [15] K. Vollrath, Stahl und Eise 133, 45-53, (2013).
- [16] K. Konopka, K. Miłkowska-Piszczek, L. Trębacz, J. Falkus, Archives of Metallurgy and Materials 60 (1), 235- 238 (2015).
- [17] J. Jezierski, Z. Buliński, K. Janerka, M. Stwarz, K. Kaczmarek, Indian Journal of Engineering and Materials Sciences 21, 322-328 (2014).
- [18] A. Cwudziński, Metallurgical Research & Technology 111 (1), 45-55 (2014).
Uwagi
EN
This research work was financed through statutory funds at AGH University of Science and Technology 11.11.110.293
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8089b8e2-2a41-4bd4-952c-909fac33050d