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Abstract The aim of this paper is analysis of the possibility of determin-
ing the internal structure of the fibrous composite material by estimating
its thermal diffusivity. A thermal diffusivity of the composite material was
determined by applying inverse heat conduction method and measurement
data. The idea of the proposed method depends on measuring the time-
dependent temperature distribution at selected points of the sample and
identification of the thermal diffusivity by solving a transient inverse heat
conduction problem. The investigated system which was used for the identi-
fication of thermal parameters consists of two cylindrical samples, in which
transient temperature field is forced by the electric heater located between
them. The temperature response of the system is measured in the cho-
sen point of sample. One dimensional discrete mathematical model of the
transient heat conduction within the investigated sample has been formu-
lated based on the control volume method. The optimal dynamic filtration
method as solution of the inverse problem has been applied to identify un-
known diffusivity of multi-layered fibrous composite material. Next using
this thermal diffusivity of the composite material its internal structure was
determined. The chosen results have been presented in the paper.
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4 S. Kucypera

Nomenclature

a – thermal diffusivity, m2/s
bi,j – coefficients in Eq. (7)
c – specific heat, J/kg K
d – radial size of the sample, m
k – thermal conductivity, W/m K
F – function of the state which defines the relation between the vectors of state in

two adjacent time steps
G – elements of the matrix G represent derivatives of the state function Fi with

respect to the elements of the state vector yj
H – matrix describes the relationship between measured (observed) and estimated

quantities
L – number of measurement sensors (thermocouples)
M – number of identified parameters
N – number of nodal temperatures
P – covariance matrix of the estimate errors
R – thermal resistance, m2K/ W
q̇ – density of heat flux, W/m2

Q̇ – heat flux (power of the electric heater), W
t – temperature, oC
u – volumetric share of fibres in composite material
V – covariance matrix of measurements errors
x – coordinate in Fig. 1
y – vector of state
z – vector of observations

Greek symbols

δ – axial thickness of the sample, m
∆xi – thickness of ith layer
∆λ – time step
ν – measurement error
ρ – density, kg/m3

τ – time, s
ω – maximal disturbance of the measurement result

Subscripts

i – refers to the node
k – refers to the time step

1 Introduction

As known presently produced composite material are most often multi lay-
ered fibrous materials with the reproducible structure. Therefore the ther-
mal diffusivity of these material depends on the thermal properties of the
matrix and the fibres as well as the volumetric fraction of the fibres in the
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composite material. Hence, knowledge of the true values of thermal diffu-
sivity of materials is very important to determine the volumetric fraction
of the fibres in composite material (internal structure of the composite) [1].
Therefore based on the identification of the thermal diffusivity of multilay-
ered fibrous composite material the possibilities of determining its internal
structure were presented in the paper.

Determination of the thermal diffusivity of composite material is based
on the solution of the inverse heat conduction problem in the investigated
sample for given boundary conditions and given geometry [2,3]. The in-
verse heat conduction problem is generally solved in two stages. In the first
stage, based on a suitably formulated mathematical model, the direct heat
conduction problem is solved. Auxiliary measurements and their charac-
teristics (for example the temperature field) are also determined. These
quantities will be used in the second stage of solving the algorithm.

In the second stage, making use of measurement data and previously
determined quantities, the inverse problem is solved and the final quantities
are determined.

The specific feature of the considered problem is that the objective func-
tion does not depend on the identified parameters in the explicit way. In
order to find the relationship between the identified parameters and changes
of the objective function we must solve the direct transient heat conduction
boundary problem. In this paper to solve the direct boundary problem,
the mathematical model has been formulated based on the control volume
method. The inverse problem was formulated as an optimisation problem
and solved by using the optimal dynamic filtration method. Information
about input data required to solve the inverse heat conduction problem
was obtained by solving the direct heat conduction problem or from the
measurement stand.

The chosen results of research have been presented.

2 Formulation of the mathematical model and

solution of the direct heat conduction problem

One-dimensional heat conduction in the analysed process (Fig. 1) can be
described by a well-known differential equation of the form [4]

ρc
∂t

∂τ
= k

∂2t

∂x2
, k = idem . (1)
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Figure 1. The analyzed sample with given boundary conditions.

The electric heater is located between two identical samples, hence the
problem becomes symmetrical and we can analyse only one of the sample.
The boundary conditions for that case can be written in the form

−k
∂t

∂x

∣

∣

∣x=0 = q̇ , (2)

t(x, τ)
∣

∣

∣

x=±δ
= tsurf. = t0 , (3)

where x = 0 denotes the location of the heater, δ is the thickness of the
sample and q̇ is the density of heat flux.

The initial temperature in the sample is known and kept uniform, so the
initial condition for the boundary heat conduction problem has the form:

t(x, τ = 0) = t0 . (4)

For the necessity of the Kalman’s filter method [5,6], the considered tran-
sient boundary value problem (1)–(4) in the discrete form should be written.
The discrete mathematical model has been formulated based on the control
volume method (Fig. 2).

An example of the energy balance for the node ‘2’ can be written in the
form

ρ c∆x2
dt1
dτ

= ρ c∆x2
tk+1
2 − tk2
∆τ

=
∑

j

Q̇j2 =

=
tk1 − tk2
R1−2

+
tk3 − tk2
R3−2

=
tk1 − tk2

(

∆x1 +
∆x2

2

)

/k
+

tk3 − tk2
(

∆x2

2 + ∆x3

2

)

/k
(5)
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Figure 2. Division of the sample into differential elements.

Introducing the thermal diffusivity a and transforming Eq. (5) the following
expression was obtained

tk+1
2 =

(

a∆τ

∆x2
(

∆x1 +
∆x2

2

)

)

tk1+

+

[

1−

(

a∆τ

∆x2
(

∆x1 +
∆x2

2

) +
a∆τ

∆x2
(

∆x2

2 + ∆x3

2

)

)]

tk2 +

+

(

a∆τ

∆x2
(

∆x2

2 + ∆x3

2

)

)

tk3 . (6)

So the discrete mathematical model of the transient temperature field within
the sample can be written in the form of the following system equations

tk+1
1 = (1 + b11)t

k
1 + b12t

k
2 + γ1

tk+1
2 = b21t

k
1 + (1 + b22)t

k
2 + b23t

k
3

tk+1
3 = b32t

k
2 + (1 + b33)t

k
3 + b34t

k
4

tk+1
4 = b43t

k
3 + (1 + b44)t

k
4 + b45t

k
5

tk+1
5 = b54t

k
4 + (1 + b55)t

k
5

(7)

where γ includes the boundary conduction data, but coefficients bij contain
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the thermal diffusivity of layers. For node ‘1’ bij is defined

bij = − a∆τ

∆xi(∆xi +
∆xi+1

2
)
,
(

for i = j
)

bij =
a∆τ

∆xi(∆xi +
∆xi+1

2
)
,

(

for i < j
) (8)

and for node ‘2’ bij as

bij = −









a∆τ

∆xi

(

∆xi−1 +
∆xi
2

) + a∆τ

∆xi

(

∆xi
2

+
∆xi+1

2

)









, for i = j ,

bij =
a∆τ

∆xi

(

∆xi−1 +
∆xi
2

) , for i > j .

(9)
Similary for node ‘4’ bij is defined as

bij = −









a∆τ

∆xi

(

∆xi−1

2
+

∆xi
2

) + a∆τ

∆xi

(

∆xi
2

+ ∆xi+1

)









, for i = j ,

bij =
a∆τ

∆xi

(

∆xi
2

+ ∆xi+1

) , for i < j ,

(10)
and for node ‘5’ bij as

bij =
a∆τ

∆xi

(

∆xi +
∆xi−1

2

) , for i > j ,

bij = − a∆τ

∆xi

(

∆xi +
∆xi−1

2

) , for i = j .
(11)

For remaining cases not defined above bij can be written as

bij =
2a∆τ

∆xi (∆xi−1 +∆xi)
, for i > j ,

bij = −2a∆τ
∆xi

(

1
∆xi−1+∆xi

+ 1
∆xi+∆xi+1

)

, for i = j ,

bij =
2a∆τ

∆xi (∆xi +∆xi+1)
, for i < j ,

(12)
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where:
tki , t

k+1
i – temperature in ith node and k and k+1 time steps,

a – thermal diffusivity determined at each time step ,
∆τ – length of time step,
∆xi – thickness of the ith layer in the discrete plate.

3 Description of the test stand

Figure 3. Scheme of the test stand.

The scheme of the test stand is presented in Fig. 3. In the symmetrical
system two samples are located on both sides of the electric heater. The
heater is made of plastic foil coated with the electricity-resistant layer to
minimise its heat capacity. The important technical problem is to measure
the temperature of four surfaces of the samples. This is done by means
of a thin copper plate with Ni-NiCr thermocouple welded in their centres.
Those plates are located between the heater and the samples and on the
cooled outside surfaces of the samples. The other effect of applying copper
plates is that the temperature of the surfaces is more uniform. The samples
are cylinders with a diameter d and thickness δ. The samples, heater and

Unauthenticated | 10.248.254.158
Download Date | 9/8/14 2:40 PM



10 S. Kucypera

copper plates are well insulated on the cylindrical surface. The heater is
connected to a stabilised electric current-voltage power supply. The power
of the heater results from the voltage, U , and current, I, of the heater

Q̇ = UI . (13)

The heat flux q̇ per surface unit of each sample equals:

q̇ =
2Q̇

πd2
. (14)

The experiment is as follows. After assembling the samples and aux-
iliary equipment, all functions during the experiment are controled by a
special computer program. The computer switches on the power supply,
controls and registers the voltage and current, registers the temperatures
and stops the procedure if one of the given criteria is reached (i.e., time
of the experiment or maximum temperature of the sample). The results of
measurements are stored in the memory of the computer.

4 Kalman filter to solve the inverse problem

To involve the discrete Kalman filter procedure into the solution procedure
of the inverse heat conduction problem it is necessary to write the discrete
transient temperature field within the sample in the form of so called matrix
equation of state [5–7]:

yk+1 = Fk+1,k(yk) , (15)

where yk, yk+1 are the extended state vectors, which include the N nodal
temperatures and M evaluated coefficients. The product of that causes that
Fk+1,k vector valued function of state variables y is nonlinear. In the case
under scruting M = 1. So the extended vector of state can be written as:

yT = [t1, t2, ....., tN , a] = [y1, ...., yN,̈,yN+M ] . (16)

The relationship between the results of temperature measurements z (the
so-called vector of observations) in selected L sensors located in the sample
and the vector of state y at a given time step k + 1 has the form

zk+1=Hyk+vk+1 , (17)
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where the matrix H of size L ×M consists of the elements equal to unity
corresponding to the measured temperatures and with all others elements
equal to zero, because only the nodal temperatures are measured. Vector
vk+1 represents measurement errors (Gaussian white noise with zero mean)
of the covariance matrix Vk+1.

Because F(y) is a nonlinear function of the state variables and discrete
linear Kalman filter can not be used, so in order to solve the inverse problem
by Kalman filter the function F(y) must be linearized. After two steps
(prediction and filtration – correction) the Kalman filtering process contains
the following equations:

• Prediction:

ỹk+1,k = Fk+1,k(ỹk) (18)

and the covariance matrix of the prediction estimate errors can be
written as

Pk+1,k = Gk+1,kPk,kG
T
k+1,k , (19)

where G is the square matrix of the size ((N + M)(N + M). The
elements of matrix G represent derivatives of the state function Fi

with respect to the unknown quantity yj

Gi,j =
∂Fi(y1, ....yN,yN+1, ..., yN+M )

∂yj
. (20)

• Correction:

ỹk+1 = ỹk+1,k +Kk+1

[

zk+1 −Hỹk+1,k

]

, (21)

where Kk+1 is the so-called Kalman gain matrix and can be expressed
as

Kk+1 = Pk+1,kH
T
[

HWk+1,kH
T +Vk+1

]−1
. (22)

The covariance matrix of estimate errors has the form:

Pk+1 = Pk+1/k−Pk+1/kH
T [HPk+1/kH

T +Vk+1]
−1HPk+1/k . (23)

The calculation procedure starts at the time k = 0 for the given a priori

initial vector y0 and covariance matrix P0,0. At each time step the al-
gorithm uses the measurement results zk+1 from the number of L sensors
(thermocouples) located within the sample.
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5 Selected results of the research

At first the accuracy of the proposed method was verified by a numerical
experiment [8]. To solve the inverse problem for numerical experiment re-
sults of ‘measurements’ tmeas

i were obtained by adding a noise term (ων) to
the results of solution of the direct boundary heat conduction problem (for
given values of a) ti according to the relationship

tmeas
i = ti + ων , (24)

where ν is the standard deviation of measurement errors and ω is maximal
disturbance of the measurement result. For normally distributed errors
(Gaussian distributed noise) with 99% confidence for the measured data, ω
lies in the range −2.576 ≤ ω ≤ 2.576, and the value of ω is calculated by a
random generator.

In the numerical experiment the shape of the samples was assumed as
the cylinders with a diameter d = 72 mm, thickness δ = 9.1 mm and density
of material ρ = 1700 kg/m3. The power of the heater varied during each
experiment. The example value of power, P , is 2.49 W, with a heat flux
q̇ = 306.12 W/m2. The measurement sensors were located on the internal
(x = 0) and external (x = δ) surfaces of the samples. The simulated
measurement data were obtained using the simulated exact results obtained
from the solution of the direct heat conduction problem and disturbed by
the different error ν, Eq. (21).

The temperature within the sample was measured with time step ∆τ =
1 s. The influence of the measurement errors v = 0.01÷0.1 K on the results
of identification was examined, but results presented below were obtained
for the error ν = 0.05 K.

The thermal property assumed for the numerical experiment is diffu-
sivity, a = 1.1439 × 10−7 m2/s. The following entry value of the searched
parameter was assumed: a = 1.1029 ∗ 10−7 m2/s. After calculations by
means of the Kalman filter method the following result was obtained: a =
1.144 × 10−7m2/s.

Next, using the real measurement data for different content of the fi-
bres in the composite material and the worked out computer program, the
thermal diffusivities were determined (the program is worked out by autor
in Delphi environment). The average temperatures of heated and cooled
surfaces of the samples for exemplary real measurement data are shown in
Fig. 4. The results obtained by means of the proposed algorithm have been
presented in the Tab. 1 and in Fig. 5.
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Figure 4. Temperature distribution on the surfaces of the sample as a function of time.

Figure 5. Thermal diffusivity a as a function of a volumetric share of a fibres u in the
composite material, R2 is the correlation coefficient.

Table 1. Results of estimation of the thermal diffusivity.

No. of sample Content of fibres in com-
posite material, [%]

Thermal diffusivity
a × 107, [m2/s]

1 5.41 1.35
2 10.40 1.52
3 20.78 1.86
4 28.91 2.21
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The appointed values of thermal diffusivity of samples with a thickness
9.1 mm and different contents of fibres in composite material provided the
basis for determination of the mathematical relation between thermal diffu-
sivity and share of fibres in the composite. In the presented diagram it is vis-
ible that this dependence is linear and has the form: a = 0.0361U +1.1434.
The values of the coefficients of this line were determined by applying the
method of linear regression. The appointed function describes well the re-
lation between diffusivity and content of fibres, which confirms the value of
the correlation coefficient.

6 Final conclusions

The final conclusions may be listed as follows:

• The inverse heat conduction solution problem based on the combi-
nation control volume method, measurement data and the Kalman
filter method constitutes a very effective tool for identification of the
thermal diffusivity of the fibrous composite materials.

• The method enables us to estimate the accuracy of identification pa-
rameter, what is a very important feature of the algorithm.

• The proposed approach makes it possible to short the time of experi-
ments which is another advantage of this method.

• On the basis of the obtained results we can affirm, that exists a possi-
bility to determine the share of fibres in the composite material based
on the determined thermal diffusivity.

Received 7 September 2010
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