PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of storage stability of hydrogen sulfide in Tedlar bags in different sampling temperatures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Porównanie stabilności przechowywania siarkowodoru w workach tedlerowych w różnych temperaturach pobierania próbek
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to investigate the stability of storage losses of hydrogen sulphide in Tedlar sampling bag materials at different sampling temperatures (between 4°C and 37°C). Conditions of samples storage were as follows: 20°C storage temperature, exterior relative humidity - 40%, without any light exposure. After first 8 hours of H2S storage, two groups of sampling temperature ranges were distinguished - with more than 50% reduction (range of sapling temperatures from 13°C to 20°C) and with less than 50% reduction of hydrogen sulfide concentration (temperatures between 4°C and 13°C and from 23°C to 37°C). This trend continued up to 25 h and 29 h when the reduction of the hydrogen sulfide concentration became greater than 50% (the temperatures, respectively, 13-14°C and 15-17°C). The highest reduction of H2S was observed for the extreme temperatures (4-6°C and 37-38°C), with the biggest differences between sampling and storage temperature values. Present study draw attention to the temperature as an important factor (between i.a. humidity and pressure) which should be considered not only during the storage, but also in the sampling phase of air analysis. Difference between temperature in both phases can cause important changes in compound concentrations.
PL
Celem badania było zbadanie stabilności oraz strat stężenia siarkowodoru podczas przechowywania w workach Tedlarowych, w różnych temperaturach pobierania próbek (pomiędzy 4°C i 37°C). Warunki przechowywania próbek były następujące: temperatura przechowywania: 20°C, wilgotność względna na zewnątrz: 40%, brak ekspozycji na światło. Po pierwszych 8 godzinach przechowywania H2S, wyróżniono dwie grupy zakresów temperatur pobierania próbek - z ponad 50% redukcją (zakres temperatur od 13°C do 20°C) i z mniej niż 50% redukcją stężenia siarkowodoru (temperatury od 4°C i 13°C oraz od 23°C do 37°C). Trend ten utrzymywał się do 25 h i 29 h, kiedy redukcja stężenia siarkowodoru przekroczyła 50% (temperatury odpowiednio 13-14°C i 15-17°C). Największą redukcję siarkowodoru zaobserwowano w skrajnych temperaturach (4-6°C oraz 37-38°C), przy największych różnicach między wartościami temperatury pobierania próbek i przechowywania. Niniejsze badania zwracają uwagę na temperaturę jako ważny czynnik (pomiędzy innymi wilgotnością i ciśnieniem), który powinien być brany pod uwagę nie tylko podczas przechowywania, ale także w fazie pobierania próbek do analizy powietrza. Różnica między temperaturą w obu fazach może powodować istotne zmiany w stężeniach związków.
Rocznik
Tom
Strony
14--19
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Warsaw University of Technology Faculty of Building Services, Hydro and Environmental Engineering Nowowiejska 20, 00-653 Warsaw, Poland
autor
  • Miejskie Przedsiębiorstwo Oczyszczania w M. St. Warszawie Sp. z o.o. ul. Obozowa 43, 01-161 Warsaw, Poland
Bibliografia
  • [1] Bakhtari A. 2014 Reducing Odour Sample Degradation: A Comparative Study of Nalophan, Tedlar and PTFE Sample Bags. Conf. Materials, Odour Conference, Olores, Chile, Santiago.
  • [2] Blazy V., De-Guardia A., Benoist J.C., Daumoin M., Guiziou F. 2015 Correlation of chemical composition and odour concentration for emissions from pig slaughterhouse sludge composting and storage. Chemical Engineering Journal, Elsevier, 276: 398-409.
  • [3| Borras E., Tortajada-Genaro L. A., Munoz A. 2016 Determination of reduced sulfur compounds in air samples for the monitoring of malodour caused by landfills. Talanta, 148: 472477.
  • [4] Coyne L., Kuhlman C., Zovack N. 2003 The stability of sulfur compounds, low molecular weight gases, and VOCs in four air sample bag materials. www.skcinc.com. Accessed 19 June 2016.
  • [5] Coyne L., Kuhlman C., Zovack N. 2011 The stability of sulfur compounds, low molecular weight gases, and VOCs in four air sample bag materials. SKC Inc. catalogue instruction, Publication 1805 Rev 1510.
  • [6] Ekpa O., Fogliano V., Linnemann A. Carotenoid stability and aroma retention during the post-harvest storage of biofortified maize. J Sci Food Agric. 2021 Aug 15; 101(10): 4042-4049. doi: 10.1002/jsfa.11039. Epub 2021 Jan 8. PMID: 33349938; PMCID: PMC8248037.
  • [7] Gostelow P., Parsons S. A. 2000 Sewage treatment works odour measurement. Water Science and Technology 41: 33-40.
  • [8] Gostelow P., Parsons S. A., Stuetz R. M. 2001 Odour measurements for sewage treatment works. Water Research 35, 3: 579-597.
  • [9] Guillot J. M., Beghi S. 2008 Permeability to water and hydrogen sulphide of some sampling bags recommended by EN13725. Chem. Eng. Trans., 15: 79-85.
  • [10] Hansen M. J., Adamsen A. P. S., Feilberg A., Jonassen K. E. N. 2011 Stability of odourants from pig production in sampling bags for olfactometry. J. Environ. Qual. 40: 1096-1102.
  • [11] van Harreveld A. P. 2003 Odour concentration decay and stability in gas sampling bags. Journal of the Air and Waste Management Association, 53, 1: 51-60.
  • [12] Haydt D. 2001 Determination of Hydrogen Sulphide and Total Sulfur in Natural Gas. Galvanic Applied Sciences. Houston TX 77064.
  • [13] Kasper P. L., Oxbøl A, Hansen M. J., Feilberg A. Mechanisms of Loss of Agricultural Odorous Compounds in Sample Bags of Nalophan, Tedlar, and PTFE. J Environ Qual. 2018 Mar; 47(2): 246-253. doi: 10.2134/jeq2017.07.0289. PMID: 29634807.
  • [14] Kim K. H., Choi Y. J., Oh S. I., Sa J. H., Jeon E. C., Koo Y. S. 2006 Short-term distributions of reduced sulfur compounds in the ambient air surrounding a large landfill facility, Env. Monit. Assess., 121: 343-354.
  • [15] Kim K. H., Choi G. H., Choi Y. J., Song H. N., Yang H. S., Oh J. M., 2006 The effects of sampling materials selection in the collection of reduced sulfur compounds in air, 7alanta, 68, 1713.
  • [16] Laor Y., Ozer Y., Ravid U., Hanan A., Orenstein P. 2010 Methodological aspects of sample collection for dynamic olfactometry. Chemical Engineering Transactions, 23.
  • [17] Lau Y. K. 1989 Measurement of sulphur gases in ambient air. Environmental Monitoring and Assessment 13, 1: 69-74.
  • [18] Le H., Sivert E. C., Parcsi G., Stuetz R. M. 2013 Stability of volatile Sulphur Compounds (VOCs) in sampling bags impact of temperature. Water, Science and Technology, 68, 8: 1880-1887.
  • [19] Le H. V. 2015 Fate of volatile sulfur compounds in odour bags. Doctor thesis, School of Civil and Environmental Engineering, The University of New South Wales, Australia.
  • [20] Man, Z., Dai, X., Rong, L., Kong, X., Ying, S., Xin, Y & Liu, D. 2020, Evaluation of storage bags for odour sampling from intensive pig productionmeasured by proton-transfer-reaction mass-spectrometry, Biosystems Engineering, vol. 189, pp. 48-59. https://doi.org/10.1016/j.biosystemseng.2019.11.007
  • [21] Maasikmets M., Teinemaa E., Kaasik A., Kimmel V. 2015 Measurement and analysis of ammonia, hydrogen sulphide and odour emissions from the cattle farming in Estonia, Biosystems Engineering, 139: 48-59.
  • [22] Mahin T. D. 2001 Comparison of different approaches used to regulate odours around the world. Water Sci Technol., 44, 9: 87-102.
  • [23] Mugode L., Ha B., Kaunda A., Sikombe T., Phiri S., Mutale R., Davis C., Tanumihardjo S., De Moura F. F. Carotenoid retention of biofortified provitamin A maize (Zea mays L.) after Zambian traditional methods of milling, cooking and storage. J Agric Food Chem. 2014 Jul 9; 62(27): 6317-25. doi: 10.1021/jf501233f. Epub 2014 Jun 27. PMID: 24930501.
  • [24] Ortiz D., Rocheford T., Ferruzzi M. G. Influence of Temperature and Humidity on the Stability of Carotenoids in Biofortified Maize (Zea mays L.) Genotypes during Controlled Postharvest Storage. J Agric Food Chem. 2016 Apr 6; 64(13): 2727-36. doi: 10.1021/aes.jafe.5b05698. Epub 2016 Mar 23. PMID: 26939642.
  • [25] Reinikainen L. M., Jaakkola J. J. K., Seppanen O. 1992 The effect of air humidification on symptoms and perception of indoor air quality in office workers, a six-period cross-over trial. Arch. Environ. Health, 47: 8-15.
  • [26] Sulyok M., Haberhauer-Troyer Ch., Rosenberg E., Grasserbauer M. 2001 Investigation of the storage stability of selected volatile sulfur compounds in different sampling containers. Journal of Chromatography A, 917: 367-374.
  • [27] Szyłak-Szydłowski M. 2015 Odour Samples Degradation During Detention in Tedlar Bags. Air Soil Pollut., 226, 7: 227-239.
  • [28] Taleon V., Mugode L., Cabrera-Soto L., Palacios-Rojas N. Carotenoid retention in biofortified maize using different post-harvest storage and packaging methods. Food Chem. 2017 Oct 1; 232: 60-66. doi: 10.1016/j.foodchem.2017.03.158. Epub 2017 Mar 31. PMID: 28490117; PMCID: PMC5437647.
  • [29] Trabue S. L., Anhalt J. C., Zahn J. A. 2006 Bias of Tedlar bags in the measurement of agricultural odourants. Journal of Environmental Quality, 35, 5: 1668-1677.
  • [30] Zarra T., Naddeo V., Belgiorno V., Reiser M., Kranert M. 2008 Odour monitoring of small wastewater treatment plant located in sensitive environment. Water Science and Technology, 58, 1: 89-94.
  • [31] Zarra T., Reiser M., Naddeo V., Belgiorno V., Kranert M. 2012 A comparative and critical evaluation of sampling materials in measurement of odour concentration by dynamic olfactometry. Chemical Engineering Transactions, 30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8074d303-ef67-488d-8a38-e48196d150e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.