PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of temperature, bed height, and particle size on Ni(II) removal in a continuous system: Modelling the break curve

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this research was to evaluate the adsorption capacity of the shell biomass (Dioscorea rotundata), taking into account the impact of temperature, bed height, and particle size on the removal of nickel(II) ions in aqueous solution in a continuous fixed-bed column system; performing the modelling of the break curve. The biomass was characterised by SEM-EDS analysis. The analysis found that it represents a rough, heterogeneous structure, rich in carbon and oxygen, with mesopores, and is suitable for removing heavy metals. It also determined the optimum parameters of the bed height, particle size, and temperature, keeping the pH and the initial concentration of the solution constant. The results revealed that the bed height and the particle size are the two most influential variables in the process. Ni(II) removal efficiencies range between 85.8 and 98.43%. It was found that the optimal conditions to maximise the efficiency of the process are temperature of 70°C, 1.22 mm particle size, and 124 mm bed height. The break curve was evaluated by fitting the experimental data to the Thomas, Adams-Bohart, Dose-Response, and Yoon-Nelson models, with the Dose-Response model showing the best affinity with a coefficient of determination R2 of 0.9996. The results obtained in this research showed that yam shell could be suggested as an alternative for use in the removal of Ni(II) ions present in an aqueous solution in a continuous system.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
257--264
Opis fizyczny
Bibliogr. 55 poz., rys., wykr., tab.
Twórcy
  • Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
  • Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
  • Universidad de Cartagena, Department of Food Engineering, Carrera 6, Cl. de la Universidad 36-100, Cartagena de Indias, Colombia
  • Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
  • Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
Bibliografia
  • ABDOLALI A., NGO H.H., GUO W., ZHOU J.L., ZHANG J., LIANG S., CHANG S. W., NGUYEN D.D., LIU Y. 2017. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresource Technology. Vol. 229 p. 78–87. DOI 10.1016/j.biortech.2017.01.016.
  • AFROZE S., SEN T.K. 2018. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water, Air & Soil Pollution. Vol. 229(7), 225. DOI 10.1007/s11270-018-3869-z.
  • AKPOMIE K.G., ELUKE L.O., AJIWE V.I.E., ONYEMEZIRI A.C. 2018. Attenuation kinetics and desorption performance of Artocarpus altilis seed husk for Co (II), Pb (II) And Zn (II) ions. Iranian Journal of Chemistry and Chemical Engineering. Vol. 37. No. 3 p. 171–186.
  • ANOOP KRISHNAN K., SREEJALEKSHMI K.G., BAIJU R.S. 2011. Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith. Bioresource Technology. Vol. 102 p. 10239–10247. DOI 10.1016/j.biortech.2011.08.069.
  • APIRATIKUL R., CHU K.H. 2021. Improved fixed bed models for correlating asymmetric adsorption breakthrough curves. Journal of Water Process Engineering. Vol. 40, 101810. DOI 10.1016/j.jwpe.2020.101810.
  • ASTM D6913-04 Standard test methods for particle-size distribution (gradation) of soils using sieve analysis [online]. American Society for Testing and Materials. [Access 10.10.2020]. Available at: https://tienda.aenor.com/norma-astm-d6913-04-036631
  • BABARINDE A., OGUNDIPE K., SANGOSANYA K.T., AKINTOLA B.D., HASSAN A.-O.E. 2016. Comparative study on the biosorption of Pb(II), Cd(II) and Zn(II) using lemon grass (Cymbopogon citratus): Kinetics, isotherms and thermodynamics. Chemistry International. Vol. 2. No. 2 p. 89–102. DOI 10.5281/zenodo.1470602.
  • BARQUILHA C.E.R., COSSICH E.S., TAVARES C.R.G., SILVA E.A. 2017. Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Journal of Cleaner Production. Vol. 150 p. 58–64. DOI 10.1016/j.jclepro.2017.02.199.
  • BATOOL F., AKBAR J., IQBAL S., NOREEN S., BUKHARI S.N.A. 2018. Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorganic Chemistry and Applications. Vol. 2018, 3463724. DOI 10.1155/2018/3463724.
  • BIGDELOO M., TEYMOURIAN T., KOWSARI E., RAMAKRISHNA S., EHSANI A. 2021. Sustainability and circular economy of food wastes: Waste reduction strategies, higher recycling methods, and improved valorization. Materials Circular Economy. Vol. 3. No. 1, 3. DOI 10.1007/s42824-021-00017-3.
  • BISWAS S., NAG S. 2021. Biomass-based absorbents for heavy metal removal. In: Green adsorbents to remove metals, dyes and boron from polluted water. Eds. Inamuddin, M. Ahamed, E. Lichtfouse, A. Asiri. Environmental Chemistry for a Sustainable World. Vol. 49 p. 351–376. Springer, Cham. DOI 10.1007/978-3-030-47400-3_14.
  • BOUCHERDOUD A., KHERROUB D.E., BESTANI B., BENDERDOUCHE N., DOUINAT O. 2021. Fixed-bed adsorption dynamics of methylene blue from aqueous solution using alginate-activated carbon composites adsorbents. Algerian Journal of Environmental Science and Technology Month Edition. Vol. 8. No. 1 p. 2329–2337.
  • CHAO H.-P., CHUNG C.C., AILEEN N. 2014. Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. Journal of Industrial and Engineering Chemistry. Vol. 20. No. 5 p. 3408–3414. DOI 10.1016/j.jiec.2013.12.027.
  • CORRAL-ESCÁRCEGA M.C., RUIZ-GUTIÉRREZ M.G., QUINTERO-RAMOS A., MELÉNDEZ-PIZARRO C.O., LARDIZABAL-GUTIÉRREZ D., CAMPOS-VENEGAS K. 2017. Use of biomass-derived from pecan nut husks (Carya illinoinensis) for chromium removal from aqueous solutions. Column Modeling and Adsorption Kinetics Studies. Revista Mexicana de Ingeniera Quimica. Vol. 16. No. 3 p. 939–953.
  • DAI Y., SUN Q., WANG W., LU L., LIU M., LI J., ZHANG Y. 2018. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere. Vol. 211 p. 235–253. DOI 10.1016/j.chemosphere.2018.06.179.
  • DEMIREL M., KAYAN B. 2012. Application of response Surface methodology and central composite design for the optimization of textile dye degradation by wet air oxidation. International Journal of Industrial Chemistry. Vol. 3, 24 p. 1–10. DOI 10.1186/2228-5547-3-24.
  • DENG Y., HUANG S., DONG C., MENG Z., WANG X. 2020. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresource Technology. Vol. 303, 122853. DOI 10.1016/j.biortech.2020.122853.
  • DENG Y., HUANG S., LAIRD D.A., WANG X., DONG C. 2018. Quantitative mechanisms of cadmium adsorption on rice straw- and swine manure-derived biochars. Environmental Science and Pollution Research. Vol. 25. No. 32 p. 32418–32432. DOI 10.1007/s11356-018-2991-1.
  • EGBOSIUBA T.C., ABDULKAREEM A.S., KOVO A.S., AFOLABI E.A., TIJANI J.O., BANKOLE M.T., BO S., ROOS W.D. 2021. Adsorption of Cr(VI), Ni (II), Fe(II) and Cd(II) ions by KIAgNPs decorated MWCNTs in a batch and fixed bed process. Scientific Reports. Vol. 11. No. 1, 75. DOI 10.1038/s41598-020-79857-z.
  • HAROON H., ASHFAQ T., GARDAZI S.M.H., SHERAZI T.A., ALI M., RASHID N., BILAL M. 2016. Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of eucalyptus camaldulensis waste: Batch and column reactors. Korean Journal of Chemical Engineering. Vol. 33. No. 10 p. 2898–2907. DOI 10.1007/s11814-016-0160-0.
  • HERRERA-BARROS A., BITAR-CASTRO N., VILLABONA-ORTÍZ Á., TEJADA-TOVAR C., GONZÁLEZ-DELGADO Á.D. 2020. Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO 2 anoparticles. Sustainable Chemistry and Pharmacy. Vol. 17, 100299. DOI 10.1016/j.scp.2020.100299.
  • LARA J., TEJADA-TOVAR C., VILLABONA-ORTÍZ A., ARRIETA A. 2016. Adsorption of lead and cadmium in continuous of fixed bed on cocoa waste. Revista ION. Vol. 29. No. 2 p. 111–122. DOI 10.18273/revion.v29n2-2016009.
  • LAVANYA R., GOMATHI T., NITHYA R., SUDHA P.N. 2020. Fixed-bed column adsorption studies of lead (II) from aqueous solution using Chitosan-G-Maleic Anhydride-G-Methacrylic Acidcopoly-mer. Journal of Science and Technology. Vol. 5. No. 4 p. 316–334. DOI 10.46243/jst.2020.v5.i4.pp316-334.
  • LIANG X., WEI G., XIONG J., TAN F., HE H., QU C., ..., JING Z. 2017. Adsorption isotherm, mechanism, and geometry of Pb(II) on magnetites substituted with transition metals. Chemical Geology. Vol. 470 p. 132–140. DOI 10.1016/j.chemgeo.2017.09.003.
  • MAHARANA M., MANNA M., SARDAR M., SEN S. 2021. Heavy metal removal by low-cost adsorbents. In: Green adsorbents to remove metals, dyes and boron from polluted water. Eds. Inamuddin, M.I. Ahamed, E. Lichtfouse, A.M. Asiri. Cham. Springer p. 245–272. DOI 10.1007/978-3-030-47400-3_10.
  • MAHDI Z., YU Q.J., EL HANANDEH A. 2018. Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar. Journal of Environmental Chemical Engineering. Vol. 6. No. 1 p. 1171–. 1181DOI 10.1016/j.jece.2018.01.021.
  • MALIK R., BHASKARAN M., LATA S. 2021. Heavy metal removal from wastewater using adsorbents. In: Water pollution and remediation: Heavy metals. Eds. Inamuddin, M.I. Ahamed, E. Lichtfouse p. 441–469. Cham. Springer. DOI 10.1007/978-3-030-52421-0_13.
  • MANJULADEVI M., ANITHA R., MANONMANI S. 2018. Kinetic study on adsorption of Cr (VI), Ni (II), Cd (II) and Pb (II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Applied Water Science. Vol. 8. No. 1, 36. DOI 10.1007/s13201-018-0674-1.
  • MARTÍN-LARA, M.Á., TRUJILLO MIRANDA M.C., RONDA GÁLVEZ A., PÉREZ MUÑOZ A., CALERO DE HOCES M. 2017. Valorization of olive stone as adsorbent of chromium(VI): Comparison between laboratory-and pilot-scale fixed-bed columns. International Journal of Environmental Science and Technology. Vol. 14. No. 12 p. 2661–2674. DOI 10.1007/s13762-017-1345-8.
  • MISHRA A., TRIPATHI B.D., RAI A.K. 2016. Packed-bed column biosorption of chromium (VI) and nickel (II) onto fenton modified hydrilla verticillata dried biomass. Ecotoxicology and Environmental Safety. Vol. 132 p. 420–428. DOI 10.1016/j.ecoenv.2016.06.026.
  • MOINO B.P., COSTA C.S.D., DA SILVA M.G.C., VIEIRA M.G.A. 2017. Removal of nickel ions on residue of alginate extraction from Sargassum filipendula seaweed in packed bed. Canadian Journal of Chemical Engineering. Vol. 95. No. 11 p. 2120–2128. DOI 10.1002/cjce.22859.
  • MOSCATELLO N., SWAYAMBHU G., JONES C.H., XU J., DAI N., PFEIFER B.A. 2018. Continuous removal of copper, magnesium, and nickel from industrial wastewater utilizing the natural product yersi-niabactin immobilized within a packed-bed column. Chemical Engineering Journal. Vol. 343 p. 173–179. DOI 10.1016/j.cej.2018.02.093.
  • NAGHIZADEH A., GHASEMI F., DERAKHSHANI E., SHAHABI H. 2017. Thermodynamic, kinetic and isotherm studies of sulfate removal from aqueous solutions by graphene and graphite nanoparticles. Desalination and Water Treatment. Vol. 80 p. 247–254. DOI 10.5004/dwt.2017.20891.
  • NITHYA K., SATHISH A., SENTHIL KUMAR P. 2020. Packed bed column optimization and modeling studies for removal of chromium ions using chemically modified Lantana camara adsorbent. Journal of Water Process Engineering. Vol. 33, 101069. DOI 10.1016/j.jwpe.2019.101069.
  • PATEL H. 2020. Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Scientific Reports. Vol. 10. No. 1, 16895. DOI 10.1038/s41598-020-72583-6.
  • PRIYANTHA N., LIM L.B.L., MALLIKARATHNA S., KULASOORIYA T.P.K. 2019. Enhanced removal of Ni(II) by acetic acid-modified peat. Desalination and Water Treatment. Vol. 137 p. 162–173. DOI 10.5004/dwt.2019.23213.
  • RAULINO G.S.C., VIDAL C.B., LIMA A.C.A., MELO D.Q., OLIVEIRA J.T., NASCIMENTO R.F. 2014. Treatment influence on green coconut shells for removal of metal ions: pilot-scale fixed-bed column. Environmental Technology (United Kingdom). Vol. 35. No. 14 p. 1711–1720. DOI 10.1080/09593330.2014.880747.
  • RESKE G.D., DA ROSA B.C., VISIOLI L.J., DOTTO G.L., DE CASTILHOS F. 2020. Intensification of Ni(II) adsorption in a fixed bed column through subcritical conditions. Chemical Engineering and Processing – Process Intensification. Vol. 149, 107863. DOI 10.1016/j.cep.2020.107863.
  • SAADAT S., HEKMATZADEH A.A., JASHNI A.K. 2016. Mathematical modeling of the Ni(II) removal from aqueous solutions onto pre-treated rice husk in fixed-bed columns: A comparison. Desalination and Water Treatment. Vol. 57. No. 36 p. 16907–16918. DOI 10.1080/19443994.2015.1087877.
  • SABIR A., ALTAF F., BATOOL R., SHAFIQ M., KHAN R.U., JACOB K.I. 2021. Agricultural waste absorbents for heavy metal removal. In: Green adsorbents to remove metals, dyes and boron from polluted water. Eds. Inamuddin, M.I. Ahamed, E. Lichtfouse, A.M. Asiri. Cham. Springer p. 195–228. DOI 10.1007/978-3-030-47400-3_8.
  • SEIFPANAHI K.S., ARDEJANI F.D., BADII K., OLYA M.E. 2017. Preparation and characterization of novel nano-mineral for the removal of several heavy metals from aqueous solution: Batch and continuous systems. Arabian Journal of Chemistry. Vol. 10. No. 2 p. 3108–3127. DOI 10.1016/j.arabjc.2013.12.001.
  • SRIVASTAVA S., AGRAWAL S.B., MONDAL M.K. 2019. Fixed bed column adsorption of Cr(VI) from aqueous solution using nanosorbents derived from magnetite impregnated Phaseolus vulgaris husk. Environmental Progress and Sustainable Energy. Vol. 38. No. s1 p. S68–S76. DOI 10.1002/ep.12918.
  • ŠURÁNEK M., MELICHOVÁ Z., KUREKOVÁ V., KLJAJEVIĆ L., NENADOVIĆ S. 2021. Removal of nickel from aqueous solutions by natural bentonites from Slovakia. Materials. Vol. 14 No. 2, 282. DOI 10.3390/ma14020282.
  • TEJADA-TOVAR C., VILLABONA-ORTÍZ A., RAMÍREZ-VÁSQUEZ P. 2020. Valorización de residuos de la obtención de almidón de ñame espino para su uso como bioadsorbente en la remoción de Cromo (VI) y Níquel (II) [Waste valorization of starch obtained from hawthorn yam as bioadsorbent on chromium (VI) and nickel (II) removal]. INGE CUC. Vol. 16. No. 1 p. 1–10. DOI 10.17981/ingecuc.16.1.2020.02.
  • TEJADA-TOVAR C., VILLABONA-ORTÍZ A., ROMERO-MURILLO L., FLOREZ-MADRIGAL G., ACEVEDO D. 2018. Design of a modular filtration-adsorption system for removal of methylene blue and turbidity using activated carbons and a sand-gravel-anthracite filter. International Journal of ChemTech Research. Vol. 11. No. 05 p. 249–264. DOI 10.20902/ijctr.2018.110528.
  • TOBÓN-OROZCO D., VASCO CORREA C.A. 2021. Water environmental regulation in Colombia. Kairós, Revista De Ciencias Económicas, Jurídicas Y Administrativas. Vol. 4. No. 6 p. 82–96. DOI 10.37135/kai.03.06.06.
  • VERA L.M., BERMEJO D., UGUÑA M.F., GARCIA N., FLORES M., GONZÁLEZ E. 2019. Fixed bed column modeling of lead(II) and cadmium(II) ions biosorption on sugarcane bagasse. Environmental Engineering Research. Vol. 24. No. 1 p. 31–37. DOI 10.4491/eer.2018.042.
  • VERA-CABEZAS, L., BERMEJO D., ROSAS M.U., ALVEAR N.G.,. ZAMORA M.F., BRAZALES D. 2018. Biosorption of Pb (II) and Cd (II) in fixed bed columns with cocoa shell. Afinidad. Vol. 75. No. 581 p. 16–22.
  • VILLABONA-ORTIZ Á., TEJADA-TOVAR C., RUIZ-PATERNINA E., FRÍAS-GONZÁLEZ J.D., BLANCO-GARCÍA G.D. 2020. Optimization of the effect of temperature and bed height on Cr (VI) bioadsorption in continuous system. Revista Facultad de Ingeniería. Vol. 29.No. 54, e10477.
  • VILVANATHAN S., SHANTHAKUMAR S. 2015. Column adsorption studies on nickel and cobalt removal from aqueous solution using native and biochar form of Tectona grandis. Environmental Progress & Sustainable Energy. Vol. 35(3) p. 809–814. DOI 10.1002/ep.12567.
  • WU S., WANG C., JIN Y., ZHOU G., ZHANG L., YU P., SUN L. 2021. Green synthesis of reusable super-paramagnetic diatomite for aqueous nickel (II) removal. Journal of Colloid and Interface Science. Vol. 582 p. 1179–1190. DOI 10.1016/j.jcis.2020.08.119.
  • XAVIER A.L.P., HERRERA ADARME O.F., FURTADO L.M., FERREIRA G.M.D., MENDES DA SILVA L.H., GIL L.F., GURGEL L.V.A. 2018. Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. Journal of Colloid and Interface Science. Vol. 516 p. 431–445. DOI 10.1016/j.jcis.2018.01.068.
  • YAHYA M.D., IHEJIRIKA C.V., IYAKA Y.A., GARBA U., OLUGBENGA A.G. 2020. Continuous sorption of chromium ions from simulated effluents using citric acid modified sweet potato peels. Nigerian Journal of Technological Development. Vol. 17. No. 1 p. 47–54.DOI 10.4314/njtd.v17i1.7.
  • YU G., WANG X., LIU J., JIANG P., YOU S., DING N., GUO Q., L IN F. 2021. Applications of nanomaterials for heavy metal removal from water and soil: A review. Sustainability. Vol. 13. No. 2, 713. DOI 10.3390/su13020713.
  • YUSUF M., SONG K., L I L. 2020. Fixed bed column and artificial neural network model to predict heavy metals adsorption dynamic on surfactant decorated graphene. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 585, 124076. DOI 10.1016/j.colsurfa.2019.124076.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-807437cc-3537-44ac-9ec4-c5d4b99e5069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.