PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From exhaustive vacation queues to preemptive priority queues with general interarrival times

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the discrete-time G/GI/1 queueing system with multiple exhaustive vacations. By a transform approach, we obtain an expression for the probability generating function of the waiting time of customers in such a system. We then show that the results can be used to assess the performance of G/GI/1 queueing systems with server breakdowns as well as that of the low-priority queue of a preemptive MX+G/GI/1 priority queueing system. By calculating service completion times of low-priority customers, various preemptive breakdown/priority disciplines can be studied, including preemptive resume and preemptive repeat, as well as their combinations. We illustrate our approach with some numerical examples.
Rocznik
Strony
695--704
Opis fizyczny
Bibliogr. 50 poz., wykr.
Twórcy
autor
  • Department of Telecommunications and Information Processing, Ghent University, St-Pietersnieuwstraat 41, 9000 Gent, Belgium
autor
  • Department of Industrial Systems Engineering and Product Design, Ghent University, Technologiepark 3, 9052 Zwijnaarde, Belgium
Bibliografia
  • [1] Adan, I.J.B.F., Sleptchenko, A. and Van Houtum, G.J. (2009). Reducing costs of spare parts supply systems via static priorities, Asia-Pacific Journal of Operational Research 26(4): 559–585.
  • [2] Atencia, I. (2014). A discrete-time system with service control and repairs, International Journal of Applied Mathematics and Computer Science 24(3): 471–484, DOI: 10.2478/amcs-2014-0035.
  • [3] Atencia, I. (2015). A discrete-time queueing system with server breakdowns and changes in the repair times, Annals of Operations Research 235(1): 37–49.
  • [4] Atencia, I. (2016). A discrete-time queueing system with changes in the vacation times, International Journal of Applied Mathematics and Computer Science 26(2): 379–390, DOI: 10.1515/amcs-2016-0027.
  • [5] Avi-Itzhak, B. and Naor, P. (1963). Some queuing problems with the service station subject to breakdown, Operations Research 11(3): 303–319.
  • [6] Bak, J. and Newman, D. (1997). Complex Analysis, 2nd Edn., Springer-Verlag, New York, NY.
  • [7] Balcioğlu, B., Jagerman, D.L. and Altiok, T. (2007). Approximate mean waiting time in a GI/D/1 queue with autocorrelated times to failures, IIE Transactions 39(10): 985–996.
  • [8] Castel, H. and Hebuterne, G. (2004). Performance analysis of an optical MAN ring for asynchronous variable length packets, in J.N. de Souza et al. (Eds.), Telecommunications and Networking—ICT 2004, Lecture Notes in Computer Science, Vol. 3124, Springer Verlag, Berlin/Heidelberg, pp. 214–220.
  • [9] Choudhury, G. and Tadj, L. (2009). An M/G/1 queue with two phases of service subject to the server breakdown and delayed repair, Applied Mathematical Modelling 33(6): 2699–2709.
  • [10] Doshi, B. (1986). Queueing systems with vacations—a survey, Queueing Systems 1(1): 29–66.
  • [11] Dragieva, V. (2014). Number of retrials in a finite source retrial queue with unreliable server, Asia-Pacific Journal of Operational Research 31(2), Paper no.: 1440005.
  • [12] Dudin, A., Moon, H.L. and Dudin, S. (2016). Optimization of the service strategy in a queueing system with energy harvesting and customers’ impatience, International Journal of Applied Mathematics and Computer Science 26(2): 367–378, DOI: 10.1515/amcs-2016-0026.
  • [13] Federgruen, A. and Green, L. (1986). Queueing systems with service interruptions, Operations Research 34(5): 752–768.
  • [14] Fiems, D., Maertens, T. and Bruneel, H. (2008). Queueing systems with different types of interruptions, European Journal of Operations Research 188(3): 838–845.
  • [15] Fiems, D., Steyaert, B. and Bruneel, H. (2002). Randomly interrupted GI − G − 1 queues: Service strategies and stability issues, Annals of Operations Research 112(1–4): 171–183.
  • [16] Fiems, D., Steyaert, B. and Bruneel, H. (2004). Discrete-time queues with generally distributed service times and renewal-type server interruptions, Performance Evaluation 55(3–4): 277–298.
  • [17] Gao, S., Wang, J.T. and Van Do, T. (2016). A repairable retrial queue under Bernoulli schedule and general retrial policy, Annals of Operations Research 247(1): 169–192.
  • [18] Gaver Jr., D. (1962). A waiting line with interrupted service, including priorities, Journal of the Royal Statistical Society B24: 73–90.
  • [19] Horváth, I., Papp, J. and Telek, M. (2015). On the canonical representation of order 3 discrete phase type distributions, Electronic Notes in Theoretical Computer Science 318: 143–158.
  • [20] Jayaswal, S., Jewkes, E. and Ray, S. (2011). Product differentiation and operations strategy in a capacitated environment, European Journal of Operational Research 210(3): 716–728.
  • [21] Jiang, T. and Liu, L. (2017). The GI/M/1 queue in a multi-phase service environment with disasters and working breakdowns, International Journal of Computer Mathematics 94(4): 707–726.
  • [22] Ke, J. (2007). Batch arrival queues under vacation policies with server breakdowns and startup/closedown times, Applied Mathematical Modelling 31(7): 1282–1292.
  • [23] Kim, C., Klimenok, V.I. and Dudin, A.N. (2017). Analysis of unreliable BMAP/PH/N type queue with Markovian flow of breakdowns, Applied Mathematics and Computation 314: 154–172.
  • [24] Klimenok, V. (2001). On the modification of Rouch´e’s theorem for the queueing theory problems, Queueing Systems 38(4): 431–434.
  • [25] Krishnamoorthy, A., Jaya, S. and Lakshmy, B. (2015). Queues with interruption in random environment, Annals of Operations Research 233(1): 201–219.
  • [26] Krishnamoorthy, A., Pramod, P.K. and Chakravarthy, S.R. (2014). Queues with interruptions: A survey, TOP 22(1): 290–320.
  • [27] Lee, Y. and Lee, K. (2003). Discrete-time GeoX/G/1 queue with preemptive repeat different priority, Queueing Systems 44(4): 399–411.
  • [28] Li, W., Shi, D. and Chao, X. (1997). Reliability analysis of M/G/1 queueing systems with server breakdowns and vacations, Journal of Applied Probability 34(2): 546–555.
  • [29] Lu, H., Pang, G. and Zhou, Y. (2016). G/GI/N (plus GI) queues with service interruptions in the Halfin–Whitt regime, Mathematical Methods of Operations Research 83(1): 127–160.
  • [30] Martin, S. and Mitrani, I. (2008). Analysis of job transfer policies in systems withunreliable servers, Annals of Operations Research 162(1): 127–141.
  • [31] Morozov, E., Fiems, D. and Bruneel, H. (2011). Stability analysis of multiserver discrete-time queueing systems with renewal type server interruptions, Performance Evaluation 68(12): 1261–1275.
  • [32] Núñez Queija, R. (2000). Sojourn times in a processor sharing queue with service interruptions, Queueing Systems 34(1–4): 351–386.
  • [33] Pang, G. and Zhou, Y. (2016). G/G/∞ queues with renewal alternating interruptions, Advances in Applied Probability 48(3): 812–831.
  • [34] Sahba, P., Balcioğlu, B. and Banjevic, D. (2013). Analysis of the finite-source multiclass priority queue with an unreliable server and setup time, Naval Research Logistics 60(4): 331–342.
  • [35] Sumita, U. and Sheng, O. (1988). Analysis of query processing in distributed database systems with fully replicated files: A hierarchical approach, Performance Evaluation 8(3): 223–238.
  • [36] Takagi, H. (1991). Queueing Analysis; A Foundation of Performance Evaluation. Volume 1: Vacation and Priority Systems, Part 1, Elsevier Science Publishers, Amsterdam.
  • [37] Takine, T. and Sengupta, B. (1997). A single server queue with service interruptions, Queueing Systems 26(3–4): 285–300.
  • [38] Tang, Y. (1997). A single-server M/G/1 queueing system subject to breakdowns—some reliability and queueing problems, Microelectonics Reliability 37(2): 315–321.
  • [39] Tang, Y., Yun, X. and Huang, S. (2008). Discrete-time GeoX/G/1 queue with unreliable server and multiple adaptive delayed vacations, Journal of Computational and Applied Mathematics 220(1–2): 439–455.
  • [40] Thiruvengadam, K. (1963). Queuing with breakdowns, Operations Research 11(1): 62–71.
  • [41] Tian, N. and Zhang, Z. (2006). Vacation Queueing Models. Theory and Applications, Springer, New York, NY.
  • [42] Walraevens, J., Fiems, D. and Bruneel, H. (2006). The discrete-time preemptive repeat identical priority queue, Queueing Systems 53(4): 231–243.
  • [43] Walraevens, J., Steyaert, B. and Bruneel, H. (2004). Performance analysis of a GI − Geo − 1 buffer with a preemptive resume priority scheduling discipline, European Journal of Operational Research 157(1): 130–151.
  • [44] Wang, J.T. (2004). An M/G/1 queue with second optional service and server breakdowns, Computers & Mathematics with Applications 47(10–11): 1713–1723.
  • [45] Wang, L., Wang, C. and Adachi, F. (2011). Load-balancing spectrum decision for cognitive radio networks, IEEE Journal on Selected Areas in Communications 29(4): 757–769.
  • [46] White, H. and Christie, L. (1958). Queuing with preemptive priorities or with breakdown, Operations Research 6(1): 79–95.
  • [47] Woźniak, M., Kempa, W.M., Gabryel, M. and Nowicki, R.K. (2014). A finite-buffer queue with a single vacation policy: An analytical study with evolutionary positioning, International Journal of Applied Mathematics and Computer Science 24(4): 887–900, DOI: 10.2478/amcs-2014-0065.
  • [48] Wu, K., McGinnis, L. and Zwart, B. (2011). Queueing models for a single machine subject to multiple types of interruptions, IIE Transactions 43(10): 753–759.
  • [49] Yoon, C. and Un, C. (1994). Unslotted 1- and pi-persistent CSMA-CD protocols for fiber optic bus networks, IEEE Transactions on Communications 42(2–4): 158–465.
  • [50] Zhang, F. and Zhu, Z. (2013). A discrete-time Geo/G/1 retrial queue with vacations and two types of breakdowns, Journal of Applied Mathematics 2013, Article ID: 834731.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8071fbee-6394-4188-9423-28228e3309ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.