Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we study the existence of one and exactly one solution x ∈ C[0, 1], for a delay quadratic integral equation of Volterra-Stieltjes type. As special cases we study a delay quadratic integral equation of fractional order and a Chandrasekhar cubic integral equation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
25--36
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Faculty of Science, Alexandria University, Alexandria, Egypt
autor
- Faculty of Science, Omar Al-Mukhtar University, Al Bayda, Libya
Bibliografia
- [1] J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl. 47(2004), 271–279.
- [2] J. Banaś and B. Rzepka, An application of a measure of noncompactness in the study of asymptotic stability, Appl. Math.Lett. 16(2003), 1–6.
- [3] J. Banaś and B. Rzepka, On existence and asymptotic stability of solutions of nonlinear integral equation, J. Math. Anal. Appl. 284(2003), no. 1, 165–173.
- [4] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equations of fractional-order, J. Math. Anal. Appl. 332(2007), 1370–11378.
- [5] J. Banaś and B. Rzepka, Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comput. Model. 49(2009), no. 3–4, 488–496.
- [6] J. Banaś, J. Caballero, J. Rocha, and K. Sadarangani, Monotonic solutions of a class of quadratic integral equation of Volterra type, Comput. Math. Appl. 49(2005), 943–952.
- [7] J. Banaś and J. C. Mena, Some properties of nonlinear Volterra-Stieltjes integral operators, Comput. Math. Appl. 49(2005), 1565–1573.
- [8] J. Banaś and J. Dronka, Integral operators of Volterra-Stieltjes type, their properties and applications, Math. Comput. Model. Dyn. Syst. 32(2000), no. 11–13, 1321–1331.
- [9] J. Banaś and K. Sadarangani, Solvability of Volterra-Stieltjes operator-integral equations and their applications, Comput. Math. Appl. 41(2001), no. 12, 1535–1544.
- [10] J. Banaś and T. Zając, A new approach to theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375(2011), 375–387.
- [11] J. Banaś and D. O’Regan, Volterra-Stieltjes integral operators, Math. Comput. Model. Dyn. Syst. 41(2005), 335–344.
- [12] J. Banaś and A. Dubiel, Solvability of a Volterra-Stieltjes integral equation in the class of functions having limits at infinity, EJQTDE 53(2017), 1–17.
- [13] E. Ameer, H. Aydi, M. Arshad, and M. De la Sen, Hybrid Ćirić type graphic (Υ, Λ)-contraction mappings with applications to electric circuit and fractional differential equations, Symmetry 12(2020), no. 3, art. 467.
- [14] H. Aydi, M. Jleli, and B. Samet, On positive solutions for a fractional thermostat model with a convex-concave source term via psi-Caputo fractional derivative, Mediterr. J. Math. 17(2020), art. 16.
- [15] A. M. A. El-Sayed and H. H. G. Hashem, Integrable and continuous solutions of a nonlinear quadratic integral equation, EJQTDE 25(2008), 1–10.
- [16] A. M. A. El-Sayed and Sh. M. Al-Issa, On the existence of solutions of a set-valued functional integral equation of Volterra-Stieltjes type and some applications, Adv. Differ. Equ. 2020(2020), art. 59.
- [17] A. M. A. El-Sayed and Sh. M. Al-Issa, Existence of solutions for an ordinary second-order hybrid functional differential equation, Adv. Differ. Equ. 1(2020), art. 296.
- [18] A. M. A. El-Sayed and Sh. M. Al-Issa, On a set-valued functional integral equation of Volterra-Stieltjes type, Int. J. Math. Comput. Sci. 21(2020), no. 4, 273–285.
- [19] A. M. A. El-Sayed and Sh. M. Al-Issa, Monotonic integrable solution for a mixed type integral and differential inclusions of fractional orders, Int. J. Differ. Equ. Appl. 18(2019), no. 1, 1–9.
- [20] A. M. A. El-Sayed and Sh. M. Al-Issa, Monotonic solutions for a quadratic integral equation of fractional order, AIMS Math. 3(2004), 821–830.
- [21] A. M. A. El-Sayed and Y. M. Y. Omar, On the solvability of a delay Volterra-Stieltjes integral equation, Int. J. Differ. Equ. Appl. 18(2019), no. 1, 49–62.
- [22] A. M. A. El-Sayed and Y. M. Y. Omar, On the solutions of a delay functional integral equation of Volterra-Stieltjes type, Int. J. Appl. Comput. Math. 6(2020), art. 8.
- [23] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, 1st edition, Dover Publ. Inc., New York, 1975.
- [24] A. M. A. El-Sayed and Y. M. Y. Omar, p-Chandrasekhar integral equation, Adv. Math. Sci. J. 9(2020), no. 12, 10305–10311.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-806f1c00-f21e-47c0-b9a8-a666ee8badbb