PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Luminescence characteristics of intraplate-derived olivines

Identyfikatory
Warianty tytułu
Konferencja
Conference Proceedings of the 13th International Conference “Methods of Absolute Chronology” June 5-7th, 2019, Tarnowskie Gory, Poland
Języki publikacji
EN
Abstrakty
EN
Olivine has so far attracted limited attention as a potential luminescence dosimeter. In particular, there is a dearth of information concerning the luminescence properties of geochemically characterised, pure olivine samples. Six well-characterised olivine samples from four intraplate settings are investigated in this study, including emission wavelengths and intensities, growth of signal with absorbed dose, signal stability and recovery of a given dose with a single aliquot regeneration (SAR) protocol. All tested olivines share a low-temperature (90–100°C) UV/blue thermoluminescence (TL) peak, and five of six samples also produce a low-temperature red/yellow emission. Higher temperature TL peaks, which would be thermally stable over geological timescales and could be used for dating, are rarely observed at low doses (c. 46 Gy), but detectable though dim at significantly higher doses (c. 460 Gy). Photostimulated luminescence (PSL) emissions are very dim, but reliably detected emissions are stimulated by blue, yellow and infrared (IR) light. PSL yielded generally successful dose recovery results; however, all tested signals are prone to significant anomalous fading and complex thermal transfer between unbleachable and bleachable traps. These characteristics must be addressed if olivine is to be used as a natural dosimeter for luminescence dating. Given the variety of luminescence responses, it appears that olivine samples in future dating work may need to be individually characterised prior to measurement.
Słowa kluczowe
EN
Wydawca
Czasopismo
Rocznik
Strony
73--94
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
  • Institute of Earth and Environmental Sciences, University of Freiburg Freiburg, Germany
  • Institute of Earth and Environmental Sciences, University of Freiburg Freiburg, Germany
  • Institute of Earth and Environmental Sciences, University of Freiburg Freiburg, Germany
Bibliografia
  • 1. Aparicio A, Bustillo MA, Garcia R and Arana A, 2006. Metasedimentary xenoliths in the lavas of the Timanfaya eruption (1730–1736, Lanzarote, Canary Islands): Metamorphism and contamination processes. Geological Magazine 143(2): 181–193, DOI:10.1017/S0016756806001713.
  • 2. Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37(4–5): 487–492, DOI:10.1016/S1350-4487(03)00018-0.
  • 3. Bösken JJ and Schmidt C, 2020. Direct and indirect luminescence dating of tephra: A review. Journal of Quaternary Science 35(1–2): 39–53, DOI:10.1002/jqs.3160.
  • 4. Bogaard P, Hall CM, Schmincke HU and York D, 1987. 40Ar/39Ar laser dating of single grains: Ages of Quaternary tephra from the East Eifel volcanic field, FRG. Geophysical Research Letters 14(12): 1211–1214, DOI:10.1029/GL014i012p01211.
  • 5. Bonde A, Murray A and Friedrich WL, 2001. Santorini: Luminescence dating of a volcanic province using quartz? Quaternary Science Reviews 20(5–9): 789–793, DOI:10.1016/S0277-3791(00)00034-2.
  • 6. Bragg WL and Brown GB, 1926. Die Struktur des Olivins. Zeitschrift für Kristallographie - Crystalline Materials 63(1–6): 538–556, DOI:10.1524/zkri.1926.63.1.538.
  • 7. Bush WR, Hafner SS and Virgo D, 1970. Some ordering of iron and magnesium at the octahedrally coordinated sites in a magnesium-rich olivine. Nature 227(5265): 1339–1341, DOI:10.1038/2271339b0.
  • 8. Carracedo JC, Badiola ER and Soler V, 1992. The 1730–1736 eruption of Lanzarote, Canary Islands: A long, high-magnitude basaltic fissure eruption. Journal of Volcanology and Geothermal Research 53: 239–250, DOI:10.1016/0377-0273(92)90084-Q.
  • 9. Colin-Garcia M, Correcher V, Garcia-Guinea J, Heredia-Barbero A, Roman-Lopez J, Ortega-Gutierrez F, Negron-Mendoza A and Ramos-Bernal S, 2013. Characterization and luminescent properties of thermally annealed olivines. Radiation Measurements 56: 262–266, DOI:10.1016/j.radmeas.2013.02.008.
  • 10. Craig H and Poreda RJ, 1986. Cosmogenic 3He in terrestrial rocks: The summit lavas of Maui. Proceeding of the National Academy of Science 83(7): 1970–1974, DOI:10.1073/pnas.83.7.1970.
  • 11. De Vries BL, Acke B, Blommaert JADL, Waelkens C, Waters LBFM, Vandenbussche B, Min M, Olofsson G, Dominik C, Decin L, Barlow MJ, Brandeker A, Di Francesco J, Glauser AM, Greaves J, Harvey PM, Holland WS, Ivison RJ, Liseau R, Pantin EE, Pilbratt GL, Royer P and Sibthorpe B, 2012. Comet-like mineralogy of olivine crystals in an extrasolar proto-Kuiper belt. Nature 490(7418): 74–76, DOI:10.1038/nature11469.
  • 12. Duller GAT, 2013. Risø Luminescence Analyst. Aberystwyth University.
  • 13. Espanon VR, Chivas AR, Kinsley LPJ and Dosseto A, 2014a. Geochemical variations in the Quaternary Andean back-arc volcanism, southern Mendoza, Argentina. Lithos 208: 251–264, DOI:10.1016/j.lithos.2014.09.010.
  • 14. Espanon VR, Honda M and Chivas AR, 2014b. Cosmogenic 3He and 21Ne surface exposure dating of young basalts from Southern Mendoza, Argentina. Quaternary Geochronology 19: 76–86, DOI:10.1016/j.quageo.2013.09.002.
  • 15. Fattahi M and Stokes S, 2003. Dating volcanic and related sediments by luminescence methods: A review. Earth-Science Reviews 62(3–4): 229–264, DOI:10.1016/S0012-8252(02)00159-9.
  • 16. Fattahi M and Stokes S, 2000. Red thermoluminescence (RTL) in volcanic quartz: Development of a high sensitive detection system and some preliminary findings. Ancient TL 18(2): 35–44, http://ancienttl.org/ATL_18.htm
  • 17. Ganzawa Y, 2010. Red thermoluminescence (RTL) sensitivity change in quartz. Radiation Measurements 45(9): 985–990, DOI:10.1016/j.radmeas.2010.07.012.
  • 18. Gliganic LA, Roberts RG and Jacobs Z, 2012. Natural variations in the properties of TL and IRSL emissions from metamorphic and volcanic K-feldspars from East Africa: Assessing their reliability for dating. Radiation Measurements 47(9): 659–664, DOI:10.1016/j.radmeas.2012.03.001.
  • 19. Guérin G and Visocekas R, 2015. Volcanic feldspars anomalous fading: Evidence for two different mechanisms. Radiation Measurements 79: 1–6, DOI:10.1016/j.radmeas.2015.05.003.
  • 20. Hashimoto T, Hayashi Y, Koyanagi A, Yokosaka K and Kimura K, 1986. Red and blue colouration of thermoluminescence from natural quartz sands. Nuclear Tracks and Radiation Measurements 11(4–5): 229–235, DOI:10.1016/1359-0189(86)90039-7.
  • 21. Hashimoto T, Sakaue S, Aoki H and Ichino M, 1994. Dependence of TL-property changes of natural quartzes on aluminium contents accompanied by thermal annealing. Radiation Measurements 23(2–3): 293–299, DOI:10.1016/1350-4487(94)90055-8.
  • 22. Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Science 38(7): 1093–1106, DOI:10.1139/e01-013.
  • 23. Jain M, Andersen CE, Bøtter-Jensen L, Murray AS, Haack H and Bridges JC, 2006. Luminescence dating on Mars: OSL characteristics of Martian analogue materials and GCR dosimetry. Radiation Measurements 41(7–8): 755–761, DOI:10.1016/j.radmeas.2006.05.018.
  • 24. Jarosewich E, Nelen JA and Norberg JA, 1980. Reference samples for electron microprobe analysis. Geostandards Newsletter 4(1): 43–47, DOI:10.1111/j.1751-908X.1980.tb00273.x.
  • 25. Koike K, Nakagawa M, Koike C, Okada M and Chihara H, 2002. Thermoluminescence of simulated interstellar matter after gamma-ray irradiation: Forsterite, enstatite, and carbonates. Astronomy & Astrophysics 390(3): 1133–1139, DOI:10.1051/0004-6361:20020653.
  • 26. Laughlin AW, Poths J, Healey HA, Reneau S and WoldeGabriel G, 1994. Dating of Quaternary basalts using the cosmogenic 3He and 14C methods with implications for excess 40Ar. Geology 22(2): 135–138, DOI:10.1130/0091-7613(1994)022<0135:DOQBUT>2.3.CO;2.
  • 27. Lepper K and McKeever SW, 2000. Characterization of fundamental luminescence properties of the Mars Soil Simulant JSC Mars-1 and their relevance to absolute dating of Martian eolian sediments. Icarus 144(2), 295–301, DOI:10.1006/icar.1999.6295.
  • 28. Mark DF, Petraglia M, Smith VC, Morgan LE, Barfod DN, Ellis BS, Pearce NJ, Pal JN and Korisettar R, 2014. A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultradistal tephra: Forcing of Quaternary climate and implications for hominin occupation of India. Quatenary Geochronology 21: 90–103, DOI:10.1016/j.quageo.2012.12.004.
  • 29. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(4–5): 57–73, DOI:10.1016/S1350-4487(99)00253-X.
  • 30. Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiation Measurements 37: 377–381, DOI:10.1016/S1350-4487(03)00053-2.
  • 31. Nesse WD, 2012. Introduction to mineralogy. Oxford University Press, New York.
  • 32. Pietsch TJ, Olley JM and Nanson GC, 2008. Fluvial transport as a natural luminescence sensitiser of quartz. Quaternary Geochronology 3(4): 365–376, DOI:10.1016/j.quageo.2007.12.005.
  • 33. Pilleyre T, Montret M, Fain J, Miallier D and Sanzelle S, 1992. Attempts at dating ancient volcanoes using the red TL of quartz. Quaternary Science Reviews 11(1–2): 13–17, DOI:10.1016/0277-3791(92)90036-8.
  • 34. Preusser F, Chithambo ML, Götte T, Martini M, Ramseyer K, Sendezera EJ, Susino GJ and Wintle AG, 2009. Quartz as a natural luminescence dosimeter. Earth-Science Reviews 97(1/4): 184–214, DOI:10.1016/j.earscirev.2009.09.006.
  • 35. Rendell HM, Townsend PD, Wood RA and Luff BJ, 1994. Thermal treatments and emission spectra of TL from quartz. Radiation Measurements 23(2–3): 441–449, DOI:10.1016/1350-4487(94)90077-9.
  • 36. Richter D, Klinger P and Zöller L, 2015. Palaeodose underestimation of heated quartz in red-TL dating of volcanic contexts. Geochronometria 42(1): 182–188, DOI:10.1515/geochr-2015-0020.
  • 37. Richter D, Richter A and Dornich K, 2013. Lexsyg — A new system for luminescence research. Geochronometria 40(4): 220–228, DOI:10.2478/s13386-013-0110-0.
  • 38. Rittenour TM, Riggs NR and Kennedy LE, 2012. Application of single-grain OSL to date quartz xenocrysts within a basalt flow, San Francisco volcanic field, northern Arizona, USA. Quaternary Geochronology 10: 300–307, DOI:10.1016/j.quageo.2012.02.002.
  • 39. Rohatgi A, 2010. Web Based Plot Digitizer.
  • 40. Rubin AE and Ma C, 2017. Meteoritic minerals and their origins. Chemie der Erde - Geochemistry 77(3): 325–385, DOI:10.1016/j.chemer.2017.01.005.
  • 41. Shitaoka Y, Miyoshi M, Yamamoto J, Shibata T, Nagatomo T and Takemura K, 2014. Thermoluminescence age of quartz xenocrysts in basaltic lava from Oninomi monogenetic volcano, northern Kyushu, Japan. Geochronometria 41(1): 30–35, DOI:10.2478/s13386-013-0144-3.
  • 42. Sivakumar V, Neelakantan R and Santosh M, 2017. Lunar surface mineralogy using hyperspectral data: Implications for primordial crust in the Earth-Moon system. Geoscience Frontiers 8(3): 457–465, DOI:10.1016/j.gsf.2016.03.005.
  • 43. Smith BW, Aitken MJ, Rhodes EJ, Robinson PD and Geldard DM, 1986. Optical dating: Methodological aspects. Radiation Protection Dosimetry 17(1–4): 229–233, DOI:10.1093/oxford-journals.rpd.a079813.
  • 44. Takada M, Tani A and Shimada A, 2006. Preliminary study of the application of natural olivine in Cenozoic dating. Radiation Measurements 41(7–8): 982–986, DOI:10.1016/j.radmeas.2006.05.024.
  • 45. Thiel C, Buylaert JP, Murray A, Terhorst B, Hofer I, Tsukamoto S and Frechen, M, 2011. Luminescence dating of the Stratzing loess profile (Austria)—Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31, DOI:10.1016/j.quaint.2010.05.018.
  • 46. Thiel C, Tsukamoto S, Tokuyasu K, Buylaert JP, Murray AS, Tanaka K and Shirai M, 2015. Testing the application of quartz and feldspar luminescence dating to MIS 5 Japanese marine deposits. Quaternary Geochronology 29: 16–29, DOI:10.1016/j.quageo.2015.05.008.
  • 47. Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI:10.1016/j.radmeas.2008.06.002.
  • 48. Tsukamoto S and Duller GAT, 2008. Anomalous fading of various luminescence signals from terrestrial basaltic samples as Martian analogues. Radiation Measurements 43(7): 721–725, DOI:10.1016/j.radmeas.2007.10.025.
  • 49. Tsukamoto S, Duller GAT, Wintle AG and Frechen M, 2010. Optical dating of a Japanese marker tephra using plagioclase. Quaternay Geochronology 5(2–3): 274–278, DOI:10.1016/j.quageo.2009.02.002.
  • 50. Tsukamoto S, Duller GAT, Wintle AG and Muhs D, 2011. Assessing the potential for luminescence dating of basalts. Quaternary Geochronology 6(1): 61–70, DOI:10.1016/j.quageo.2010.04.002.
  • 51. Tsukamoto S, Kataoka KS and Miyabuchi Y, 2013. Luminescence dating of volcanogenic outburst flood sediments from Aso volcano and tephric loess deposits, southwest Japan. Geochronometria 40(4): 294–303, DOI:10.2478/s13386-013-0135-4.
  • 52. Tsukamoto S, Murray AS, Huot S, Watanuki T, Denby PM and Bøtter-Jensen L, 2007. Luminescence property of volcanic quartz and the use of red isothermal TL for dating tephras. Radiation Measurements 42(2): 190–197, DOI:10.1016/j.radmeas.2006.07.008.
  • 53. Visocekas R, 2002. Tunnelling in afterglow, its coexistence and interweaving with thermally stimulated luminescence. Radiation Protection Dosimetry 100(1–4): 45–54, DOI:10.1093/oxfordjournals.rpd.a005859.
  • 54. Visocekas R, Tale V, Zink A and Tale I, 1998. Trap spectroscopy and tunnelling luminescence in feldspars. Radiation Measurements 29(3–4): 427–434, DOI:10.1016/S1350-4487(98)00062-6.
  • 55. Walker GP, 1992. Puu Mahana near South Point in Hawaii is a primary Surtseyan ash ring, not a sandhills-type littoral cone. Pacific Science 46: 1–10, http://hdl.handle.net/10125/1669.
  • 56. Wintle AG, 1973. Anomalous fading of thermo-luminescence in mineral samples. Nature 245(5421): 143–144, DOI:10.1038/245143a0.
  • 57. Wintle AG, 2008. Fifty years of luminescence dating. Archaeometry 50(2): 276–312, DOI:10.1111/j.1475-4754.2008.00392.x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-806d1273-16a2-419d-a03d-349148ba22cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.