Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper a description of heat transfer in one-dimensional crystalline solids is presented. The fuzzy lattice Boltzmann method based on the Boltzmann transport equation is used to simulate the nanoscale heat transport in thin metal films. The fuzzy coupled lattice Boltzmann equations for electrons and phonons are applied to analyze the heating process of thin metal films via a laser pulse. Such an approach in which the parameters appearing in the problem analyzed are treated as constant values is widely used. Here, the model with fuzzy values of relaxation times and an electron-phonon coupling factor is taken into account. The problem formulated has been solved by means of the fuzzy lattice Boltzmann method using the α-cuts and the rules of directed interval arithmetic. The application of α-cuts allows one to avoid complicated arithmetical perations in the fuzzy numbers set. In the final part of the paper the results of numerical computations are shown.
Rocznik
Tom
Strony
123--135
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Institute of Computational Mechanics and Engineering Silesian University of Technology, Poland
autor
- Institute of Computational Mechanics and Engineering Silesian University of Technology, Poland
Bibliografia
- [1] Zhang Z.M., Nano/Microscale Heat Transfer, McGraw-Hill, New York 2007.
- [2] Chen G., Borca-Tasciuc D., Yang R.G., Nanoscale heat transfer, [in:] Encycl. of Nanoscience and Nanotechnology, CA: American Scientific Publishers, Valencia, 7, 2004, 429-359.
- [3] Smith A.N., Norris P.M., Microscale heat transfer, [in:] Heat Transfer Handbook, eds. A. Bejan, D. Kraus, John Wiley & Sons, 2003, Ch.18, 1309-1358.
- [4] Cattaneo C., A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Comp. Rend. 1958, 247, 431-433.
- [5] Majchrzak E., Mochnacki B., Greer A.L., Suchy J.S., Numerical modeling of short pulse laser interactions with multi-layered thin metal films, CMES: Computer Modeling in Engineering and Sciences 2009, 41, 2, 131-146.
- [6] Majchrzak E., Kałuża G., Heat flux formulation for 1D dual-phase lag equation, Journal of Applied Mathematics and Computational Mechanics 2015, 14(1), 71-78, DOI: 10.17512/ jamcm.2015.1.07.
- [7] Majchrzak E., Mochnacki B., Sensitivity analysis of transient temperature field in microdomains with respect to the dual phase lag model parameters, International Journal for Multiscale Computational Engineering 2014, 12(1), 65-77, DOI: 10.1615 /IntJMultCompEng. 2014007815.
- [8] Mochnacki B., Paruch M., Estimation of relaxation and thermalization times in microscale heat transfer model, Journal of Theoretical and Applied Mechanics 2013, 51, 4, 837-845.
- [9] Majchrzak E., Dziatkiewicz J., Analysis of ultashort laser pulse interactions with metal films using a two-temperature model, Journal of Applied Mathematics and Computational Mechanics 2015, 14(2), 31-39. DOI: 10.17512/jamcm.2015.2.04.
- [10] Dziatkiewicz J., Kuś W., Majchrzak E., Burczyński T., Turchan Ł., Bioinspired identification of parameters in microscale heat transfer, International Journal for Multiscale Computational Engineering 2014, 12(1), 79-89.
- [11] Tzou D.Y., Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor and Francis, 1997.
- [12] Piasecka-Belkhayat A., Korczak A., Application of the interval lattice Boltzmann method for a numerical modeling of thin metal films irradiation by ultra short laser pulses, IAPGOŚ 2014, 4, 85-88.
- [13] Piasecka Belkhayat A., Korczak A., Modelling of transient heat transport in one-dimensional crystalline solids using the interval lattice Boltzmann method, [in:] Recent Advances in Computational Mechanics, eds. T. Łodygowski, J. Rakowski, P. Litewka, Taylor & Francis Group, A Balkema Book, London 2014, 363-368.
- [14] Mochnacki B., Piasecka Belkhayat A., Numerical modeling of skin tissue heating using the interval finite difference method, MCB: Molecular & Cellular Biomechanics 2013, 10, 3, 233-244.
- [15] Escobar R.A., Ghai S.S., Jhon M.S., Amon C.H., Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling, Journal of Heat and Mass Transfer 2006, 49, 97-107.
- [16] Pisipati S., Geer J., Sammakia B., Murray B.T., A novel alternate approach for multiscale thermal transport using diffusion in the Boltzmann Transport Equation, International Journal of Heat and Mass Transfer 2011, 54, 3406-3419.
- [17] Ashcroft N.W., Mermin N.D., Solid State Physics, Harcourt College Publishers, New York 1976. [18] Venkatakrishnan K., Tan B., Ngoi B.K.A., Femtosecond pulsed laser ablation of thin gold film, Optics & Laser Technology 2002, 34, 199-202.
- [19] Hanss M., Applied Fuzzy Arithmetic, Springer-Verlag, Berlin-Heidelberg 2005.
- [20] Otto K., Lewis A.D., Antonsson E., Approximation alpha-cuts with the vertex method, Fuzzy Sets and Systems 1993, 55, 43-50.
- [21] Giachetti R.E., Young R.E., A parametric representation of fuzzy numbers and their arithmetic operators, Fuzzy Sets and Systems 1997, 91, 185-202.
- [22] Guerra M.L., Stefanini L., Approximate fuzzy arithmetic operations using monotonic interpolations, Fuzzy Sets and Systems 2005, 150, 5-33.
- [23] Piasecka Belkhayat A., Interval boundary element method for imprecisely defined unsteady heat transfer problems, D.Sc. Dissertation, Gliwice 2011.
- [24] Ghai S.S., Kim W.T., Escobar R.A., et al., A novel heat transfer model and its application to information storage systems, Journal of Applied Physics 2005, 97, 10P703.
- [25] Lee J.B., Kang K., Lee S.H., Comparison of theoretical models of electron-phonon coupling in thin gold films irradiated by femtosecond pulse lasers, Materials Transactions 2011, 52, 3, 547-553.
- [26] Escobar R., Smith B., Amon C., Lattice Boltzmann modeling of subcontinuum energy transport in crystalline and amorphous microelectronic devices, Journal of Electronic Packaging 2006, 128 (2), 115-124.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-806ca8d2-b448-4b4e-a00f-bf2ae3bc2c5c