PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of compound phosphate collector on flotation separation of jamesonite from marmatite and insights into adsorption mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Separating jamesonite and marmatite is difficult due to their similar response to traditional collectors. To improve the selectivity of the collector and simplify the reagent system, compound phosphate (MP) as a collector for the separation of jamesonite from marmatite was studied in this study. The flotation tests revealed that, compared with the most used butyl xanthate (BX), MP had the advantages of lower dosage and stronger selectivity under weak acid pulp. Under the optimum flotation conditions, a concentrate with the grade of 31.54% Pb, 6.93% Zn and the recovery of 89.87% Pb, 12.31% Zn could be obtained from mixed binary minerals flotation (mass ratio of 1:1). Adsorption, zeta potential, FT-IR and XPS analysis demonstrated that MP performed strong chemisorption on jamesonite surface while underwent weak physisorption on marmatite, this difference was responsible for the excellent selectivity of MP toward jamesonite flotation and weak collecting capacity to marmatite.
Rocznik
Strony
294--304
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
  • School of Minerals Processing and Bioengineering Central South University
autor
  • School of Minerals Processing and Bioengineering Central South University
autor
  • State Key Laboratory of Rare Metals Separation and Comprehensive Utilization, Guangzhou
autor
  • School of Minerals Processing and Bioengineering Central South University
Bibliografia
  • REYES, PEREZ, M., PALACIOS, BEAS, E.G., BARRIENTOS, F.R., PEREZ, LABRA, M., JUAREZ, TAPIA, J.C., REYESDOMINGUEZ, I.A., FLORES GUERRERO, M.U., TEJA, RUIZ, M.A., GUTIERREZ, GARCIA, C.E., 2019. Chemical and Instrumental Characterization of a Sulphosalt Lead Type Jamesonite, Minerals Metals & Materials Series, 503-510.
  • RADOSAVLJEVIC, S.A., STOJANOVIC, J.N., RADOSAVLJEVIC-MIHAJLOVIC, A.S., VUKOVIC, N.S., 2016. (PbSb)-bearing sphalerite from the Cumavici polymetallic ore deposit, Podrinje Metallogenic District, East Bosnia and Herzegovina, Ore. Geol. Rev, 72(1), 253-268.
  • WANG, G., 2016. Mode-independent control of singular Markovian jump systems: A stochastic optimization viewpoint, Appl. Math. Comput, 286, 155-170.
  • CHEN, J., LI, Y., LONG, Q., WEI, Z., CHEN, Y., 2011. Improving the selective flotation of jamesonite using tannin extract, Int. J. Mineral Process, 100(1-2), 54-56.
  • WEI, Z., WU, C., YU, Z., HUANG, R., MU, X., 2013. Research The Several Organic Inhibitors Influence On Jamesonite And Marmatite, Adv. Mat. Res, 275, 616-618.
  • MA, G., 2006. Study on flotation property of Pb-Sb-Zn-Fe sulfide by aryl thiolate collectors. Doctoral dissertation,Central South University.
  • HUANG, H., SUN, W., 2010. Effect of 2-aminothiophenol on the separation of jamesonite and marmatite, Min. Sci. Technol, 20(3), 425-427.
  • WANG, J., Investigation on the new collector for the bulk-flotation of multy-metal sulfideore in Dachang. Doctoral dissertation, Guangxi University.
  • ÖZTÜRK, Y., BLÇAK, Ö., ÖZDEMIR, E., EKMEKÇI, Z., 2018. Mitigation negative effects of thiosulfate on flotation performance of a Cu-Pb-Zn sulfide ore, Miner. Eng, 122, 142-147.
  • CHEN, W., CHEN, T., BU, X., CHEN, F., DING, Y., ZHANG, C., DENG, S., SONG, Y., 2019. The selective flotation of chalcopyrite against galena using alginate as a depressant, Miner. Eng, 141,148-105.
  • ZHONG, H., HUANG, Z., ZHAO, G, WANG, S., LIU, G., CAO, Z., 2015. The collecting performance and interaction mechanism of sodium diisobutyl dithiophosphinate in sulfide minerals flotation, Mater. Res. Technol, 4(2), 151-161.
  • LAI, H., DENG, J., WEN, S., LIU, Q., 2019. Elucidation of lead ions adsorption mechanism on marmatite surface by PCA assisted ToF-SIMS, XPS and zeta potential. Miner. Eng, 144, 106035.
  • SUI, C., RASHCHI, F., XU, Z., KIM, J., NESSET, J.E., FINCH, J.A., 1998. Interactions in the sphalerite-Ca-SO4-CO3 systems. Colloids Surf, 137(1–3), 69-77.
  • FINKELSTEIN, N.P., 1997. The activation of sulphide minerals for flotation: a review. Int. J. Mineral Process, 52(2-3), 81-120.
  • ZHANG, T., QIN, W., YANG, C., HUANG, S., 2014. Floc flotation of marmatite fines in aqueous suspensions induced by butyl xanthate and ammonium dibutyl dithiophosphate, Trans. Nonferrous Met. Soc. China, 24(5), 1578-1586.
  • ZHAO, L., LIU, W., DUAN, H., WANG, X., FANG, P., LIU, W., ZHOU, X., SHEN, Y., 2021. Design and selection of flotation collectors for zinc oxide minerals based on bond valence model. Miner. Eng, 160, 106681.
  • CAO, Y., XIE, X., TONG, X., FENG, D., LV, J., CHEN, Y., SONG, Q., 2021. The activation mechanism of Fe(II) ionmodified cassiterite surface to promote salicylhydroxamic acid adsorption. Miner. Eng, 160, 106707.
  • DAVILA-PULIDO, G. I., URIBE-SALAS, A., G.I. 2014. Effect of calcium, sulphate and gypsum on copper-activated and non-activated sphalerite surface properties. Miner. Eng, 55(1), 147-153.
  • IGNATKINA, V.A., BOCHAROV, V.A., D'YACHKOV, F.G., 2014. Collecting properties of diisobutyl dithiophosphinate in sulfide minerals flotation from sulfide ore. J. Min. Sci., 49(5), 795-802.
  • LAGER, T., FORSSBERG, E., 2015.Beneficiation characteristics of antimony minerals.
  • SUN, W., HAN, H., TAO, H., LIU, R., 2015. Study on the flotation technology and adsorption mechanism of galenajamesonite separation, Int. J. Min. Sci. Technol, 25(1), 53-57.
  • ZHANG, T., QIN, W., 2015. Floc flotation of jamesonite fines in aqueous suspensions induced by ammonium dibutyl dithiophosphate, J. Cent. South Univ, 22(4), 1232-1234.
  • WEI, Q., JIAO, F., QIN, W., DONG, L., FENG, L., 2019. Use of PASP and ZnSO4 mixture as depressant in the flotation separation of chalcopyrite from Cu-activated marmatite, Physicochem. Probl. Miner. Process, 55(5), 1192-1194.
  • ZHAO, K., WANG, X., WANG, Z., YAN, W, ZHOU, X., XU, L., WANG, C., 2019. A novel depressant for selective flotation separation of pyrite and pyrophyllite, Appl. Surf. Sci, 487, 9-13.
  • MING, P., XIE, Z., GUAN, Y., WANG, Z., LI, F., XING, Q., 2020. The effect of polysaccharide depressant xanthan gum on the flotation of arsenopyrite from chlorite, Miner. Eng, 157, 106551.
  • XIONG, W., DENG, J., ZHAO, K., WANG, W., WANG, Y., WEI, D., 2020. Bastnaesite, Barite, and Calcite Flotation Behaviors with Salicylhydroxamic Acid as the Collector, Miner, 10, 282-286.
  • MAN, X., OU, L., WANG, C., JIN, S., MA, X., 2019. Flotation Separation of Diaspore and Kaolinite by Using a Mixed Collector of Sodium Oleate-Tert Dodecyl Mercaptan, Front in Chem, 7.
  • LIU, Z., 2009. Study on electrochemistry of flotation of lead-antimony-zinc sulfide ore in dithiophosphate systerm. Doctoral dissertation, 20.
  • MA, X., HU, Y., ZHONG, H., WANG, S., LIU, G., ZHAO, G., 2016. A novel surfactant S-benzoyl-N,Ndiethyldithiocarbamate synthesis and its flotation performance to galena, Appl. Surf. Sci, 365, 342-345.
  • ZHAO, L., LIU, W., DUAN, H., WANG, X., FANG, P., LIU, W., ZHOU, X., SHEN, Y., 2021. Design and selection of flotation collectors for zinc oxide minerals based on bond valence model. Miner. Eng, 160, 106681.
  • JIA, Y., HUANG, X., HUANG, K., WANG, S., CAO, Z., ZHONG, H., 2019. Synthesis, flotation performance and adsorption mechanism of 3-(ethylamino)-N-phenyl-3-thioxopropanamide onto galena/sphalerite surfaces, J. Ind. Eng. Chem., 77, 416-419.
  • CAO, Z., YANG, Z., ZHANG, C., XIE, L., ZHAO, X., PAN, P., YUAN, Y., QI, W., HE, J., ZHANG, H., XUE, T., ZHANG, P., WEI, J., ZHANG, K., ZHAO, J., 2020. Facile synthesis of Sb-Sb2O5@P@C composite and study for the supercapacitor application, J. Mater. Sci-Mater. El, 31(3), 2406-2409.
  • ZAKAZNOVA-HERZOG, V.P., HARMER, S. L., NESBITT, H.W., BANCROFT, G.M., FLEMMINGR., PRATT, A.R., 2006. High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction, Surf. Sci, 600(2), 348-351.
  • FENG, B., ZHONG, C., ZHANG, L., GUO, Y., WANG, T., HUANG, Z., 2020. Effect of surface oxidation on the depression of sphalerite by locust bean gum, Miner. Eng, 146.
  • EJTEMAEI, M., NGUYEN, A.V., 2017. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate, Miner Eng, 100, 223-232.
  • HUANG, X., JIA, Y., CAO, Z., WANG, S., ZHONG, H., 2019. Investigation of the interfacial adsorption mechanisms of 2-hydroxyethyl dibutyldithiocarbamate surfactant on galena and sphalerite, Colloids Surf, 583.
  • PAN, G., SHI, Q., ZHANG, G., HUANG, G., 2020. Selective depression of talc in chalcopyrite flotation by xanthan gum: Flotation response and adsorption mechanism, Colloids Surf, 600, 29.
  • LIU, D., ZHANG, G., CHEN, Y., HUANG, G., GAO, Y., 2020. Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite, Miner. Eng, 145.
  • CAO, Y, SUN, L., GAO, Z., SUN, W., CAO, X., 2020. Activation mechanism of zinc ions in cassiterite flotation with benzohydroxamic acid as a collector. Miner. Eng, 156,106523.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-806849c7-bb1a-40e5-bc07-8a8a005d6610
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.