Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article introduces a type of dominating property, partially inherited from L. Chen’s, and proves an existence and uniqueness theorem concerning common best proximity points. A certain kind of boundary value problem involving the so-called Caputo derivative can be formulated so that our result applies.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220215
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Advanced Research Center for Computational Simulation, Chiang Mai University, Chiang Mai, 50200, Thailand; Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
autor
- Advanced Research Center for Computational Simulation, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
autor
- KMUTT Geospatial Engineering and Innovation Center, Faculty of Science, King Mongkut’s University of Technology Thonburi, Thung Khru, Bangkok, 10140, Thailand
Bibliografia
- [1] M. I. Shamos and D. Hoey, Closest-point problems, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975), 1975, pp. 151–162, DOI: https://doi.org/10.1109/SFCS.1975.8.
- [2] S. Sadiq Basha and P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math. (Szeged) 63 (1997), 289–300.
- [3] S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory 103 (2000), no. 1, 119–129.
- [4] S. Sadiq Basha, Best proximity point theorems, J. Approx. Theory 163 (2011), no. 11, 1772–1781, DOI: https://doi.org/10.1016/j.jat.2011.06.012.
- [5] E. Karapınar and I. M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci. 3 (2011), no. 3, 342–353.
- [6] E. Karapınar, Best proximity points of cyclic mappings, Appl. Math. Lett. 25 (2012), no. 11, 1761–1766.
- [7] E. Karapınar, On best proximity point of ψ-Geraghty contractions, Fixed Point Theory Appl. 1 (2013), 1–9.
- [8] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), no. 2, 604–608, DOI: https://doi.org/10.2307/2039421.
- [9] E. Karapınar and F. Khojasteh, An approach to best proximity points results via simulation functions, J. Fixed Point Theory Appl. 19 (2017), no. 3, 1983–1995.
- [10] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), no. 2, 1001–1006.
- [11] C. Mongkolkeha, Y. J. Cho, and P. Kumam, Best proximity points for Geraghty’s proximal contraction mappings, Fixed Point Theory Appl. 180 (2013).
- [12] M. I. Ayari, A best proximity point theorem for α-proximal Geraghty non-self mappings, Fixed Point Theory Appl. 10 (2019), DOI: https://doi.org/10.1186/s13663-019-0661-8.
- [13] A. Kostić, E. Karapinar, and V. Rakočević, Best proximity points and fixed points with R-functions in the framework of w -distances, Bulletin Australian Math. Soc. 99 (2019), no. 3, 497–507, DOI: https://doi.org/10.1017/S0004972718001193.
- [14] P. Magadevan, S. Karpagam, and E. Karapinar, Existence of fixed point and best proximity point of p-cyclic orbital ϕ-contraction map, Nonlinear Anal. Modell. Control. 27 (2022), 91–101, DOI: https://doi.org/10.15388/namc.2022.27.25188.
- [15] N. Shahzad, S. Sadiq Basha, and R. Jeyaraj, Common best proximity points: global optimal solutions, J. Optimiz. Theory Appl. 148 (2011), no. 1, 69–78.
- [16] S. Sadiq Basha, Common best proximity points: global minimal solutions, TOP 21 (2013), no. 1, 182–188.
- [17] P. Kumam and C. Mongkolekeha, Common best proximity points for proximity commuting mapping with Geraghty’s functions, Carpath. J. Math. 31 (2015), no. 3, 359–364.
- [18] S. Sadiq Basha, N. Shahzad, and R. Jeyaraj, Common best proximity points: global optimization of multi-objective functions, Appl. Math. Lett. 24 (2011), 883–886.
- [19] L. Chen, Common best proximity points theorems, JMRA. 39 (2019), no. 3, 289–294.
- [20] M. Asadi, Fixed points and common fixed points of mappings on CAT(0) spaces, Fixed Point Theory 14 (2013), 29–38.
- [21] C. Mongkolkeha and P. Kumam, Some common best proximity points for proximity commuting mappings, Optimization Letters 7 (2013), no. 8, 1825–1836.
- [22] C. Vetro, S. Chauhan, E. Karapınar, and W. Shatanawi, Fixed points of weakly compatible mappings satisfying generalized φ-weak contractions, Bull. Malays. Math. Sci. Soc. 38 (2015), 1085–1105, DOI: https://doi.org/10.1007/s40840-014-0074-0.
- [23] M. Asadi and P. Salimi, Some fixed point and common fixed point theorems on G-metric spaces, Nonlinear Funct. Anal Appl. 2 (2016), no. 1, 523–530.
- [24] H. Aydi, A. Felhi, and E. Karapinar, On common best proximity points for generalized α ψ− -proximal contractions, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2658–70.
- [25] A. Khemphet, P. Chanthorn, and N. Phudolsitthiphat, Common best proximity coincidence point theorem for dominating proximal generalized Geraghty in complete metric spaces, J. Funct. Spaces 2020 (2020).
- [26] M. Asadi, M. Gabeleh, and C. Vetro, A New Approach to the generalization of Darbo’s fixed point problem by using simulation functions with application to integral equations, Results Math. 74 (2019), DOI: https://doi.org/10.1007/s00025-019-1010-2.
- [27] F. Nikbakhtsarvestani, S. Vaezpour, and M. Asadi, Common fixed point theorems for weakly compatible mapping by (CLR) property on partial metric space, Iranian J. Math. Sci. Informatics. 14 (2019), 19–32.
- [28] H. Monfared, M. Asadi, and A. Farajzadeh, New generalization of Darbo’s fixed point theorem via alpha-admissible simulation functions with application, Sahand Commun. Math. Anal. 17 (2020), 161–171, DOI: https://doi.org/10.22130/scma.2018.84950.427.
- [29] C. S. Chuang and C. C. Hong, New self-adaptive algorithms and inertial self-adaptive algorithms for the split variational inclusion problems in Hilbert space, Numer. Funct. Anal. Optimiz. 43 (2022), no. 9, 1050–1068.
- [30] T. Mouktonglang and R. Suparatulatorn, Inertial hybrid projection methods with section techniques for split common fixed point problems in Hilbert spaces, UPB Scientif. Bulletin Ser. A Appl. Math. Phys. 84 (2022), no. 2, 47–54.
- [31] S. Noeiaghdam and D. Sidorov, Caputo-Fabrizio fractional derivative to solve the fractional model of energy supply-demand system, Math. Model. Eng. Probl. 7 (2020), no. 3, 359–367.
- [32] J. Singh, D. Kumar, Z. Hammouch, and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new derivative, Appl. Math. Comput. 316 (2018), 504–515, DOI: http://dx.doi.org/10.1016/j.amc.2017.08.048.
- [33] Z. Bouazza, M. S. Souid, and H. Günerhan, Multiterm boundary value problem of Caputo fractional differential equations of variable order, Adv. Differential Equation 400 (2021), DOI: https://doi.org/10.1186/s13662-021-03553-z.
- [34] B. Wongsaijai, P. Charoensawan, T. Suebcharoen, and W. Atiponrat, Common fixed point theorems for auxiliary functions with applications in fractional differential equation, Adv. Differential Equation 503 (2021), DOI: https://doi.org/10.1186/s13662-021-03660-x.
- [35] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci. (2020), 1–12, DOI: https://doi.org/10.1002/mma.6652.
- [36] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Int. J. Appl. Comput. Math. 20 (2021), no. 2, 313–333.
- [37] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 155 (2021), DOI: https://doi.org/10.1007/s13398-021-01095-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8065352a-75bd-406c-981d-ecfc1957a9ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.