PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural assessment of bridges through ambient noise deconvolution interferometry: application to the lateral dynamic behaviour of a RC multi-span viaduct

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Operational Modal Analysis (OMA) is becoming a mature and widespread technique for Structural Health Monitoring (SHM) of engineering structures. Nonetheless, while proved effective for global damage assessment, OMA-based techniques can hardly detect local damage with little effect upon the modal signatures of the system. In this context, recent research studies advocate for the use of wave propagation methods as complementary to OMA to achieve local damage identification capabilities. Specifically, promising results have been reported when applied to building-like structures, although the application of Seismic Interferometry to other structural typologies remains unexplored. In this light, this work proposes for the first time in the literature the use of ambient noise deconvolution interferometry (ANDI) to the structural assessment of long bridge structures. The proposed approach is exemplified with an application case study of a multi-span reinforced-concrete (RC) viaduct: the Chiaravalle viaduct in Marche Region, Italy. To this aim, ambient vibration tests were performed on February 4th and 7th 2020 to evaluate the lateral and longitudinal dynamic behaviour of the viaduct. The recorded ambient accelerations are exploited to identify the modal features and wave propagation properties of the viaduct by OMA and ANDI, respectively. Additionally, a numerical model of the bridge is constructed to interpret the experimentally identified waveforms, and used to illustrate the potentials of ANDI for the identification of local damage in the piers of the bridge. The presented results evidence that ANDI may offer features that are quite sensitive to damage in the bridge substructure, which are often hardly identifiable by OMA.
Rocznik
Strony
635--654
Opis fizyczny
Bibliogr. 44 poz., fot., rys., wykr.
Twórcy
  • Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 93, 06125 Perugia, Italy
  • Department of Structural Mechanics and Hydraulic Engineering, University of Granada, E.T.S. Ingenieros de Caminos, Canales y Puertos, Av. Fuentenueva sn, 18002 Granada, Spain
  • Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 93, 06125 Perugia, Italy
Bibliografia
  • [1] Moore M, Phares BM, Graybeal B, Rolander D, Washer G, Wiss J, Reliability of visual inspection for highway bridges, volume I, Tech. rep. (2001).
  • [2] Salem HM, Helmy HM. Numerical investigation of collapse of the Minnesota I-35W bridge. Eng Struct. 2014;59:635–45.
  • [3] Domaneschi M, Pellecchia C, De Iuliis E, Cimellaro GP, Morgese M, Khalil AA, Ansari F. Collapse analysis of the Polcevera viaduct by the applied element method. Eng Struct. 2020;214:110659.
  • [4] Moreu F, Li X, Li S, Zhang D. Technical specifications of structural health monitoring for highway bridges: New Chinese structural health monitoring code. Front Built Environ. 2018;4:10.
  • [5] ISIS Canada, Guidelines for Structural Health Monitoring, ISIS Canada, 2001, pp. 539–541.
  • [6] Ministero delle Infrastrutture e dei Trasporti Consiglio Superiore dei Lavori Pubblici, Linee guida per la classificazione e gestione del rischio, la valutazione della sicurezza ed il monitoraggio dei ponti esistenti (2020).
  • [7] Mitchell JS. From vibration measurements to condition-based maintenance: Seventy years of continuous progress. Sound and Vibration (magazine). 2007;41(1):62–79.
  • [8] Cawley P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct Health Mon. 2018;17(5):1225–44.
  • [9] Fan W, Qiao P. Vibration-based damage identification methods: a review and comparative study. Struct Health Mon. 2011;10(1):83–111.
  • [10] Reynders E. System identification methods for (operational) modal analysis: review and comparison. Arch Comput Methods Eng. 2012;19(1):51–124.
  • [11] Claerbout JF. Synthesis of a layered medium from its acoustic transmission response. Geophysics. 1968;33(2):264–9.
  • [12] Snieder R, Şafak E. Extracting the building response using seismic interferometry: theory and application to the Millikan Library in Pasadena. California Bull Seismol Soc Am. 2006;96(2):586–98.
  • [13] Todorovska MI, Rahmani MT. System identification of buildings by wave travel time analysis and layered shear beam models-Spatial resolution and accuracy. Struct Control Health Mon. 2013;20(5):686–702.
  • [14] Snieder R, Miyazawa M, Slob E, Vasconcelos I, Wapenaar K. A comparison of strategies for seismic interferometry. Surveys Geophys. 2009;30(4–5):503–23.
  • [15] Todorovska MI, Trifunac MD. Earthquake damage detection In the Imperial County Services Building III: analysis of wave travel times via impulse response functions. Soil Dyn Earthquake Eng. 2008;28(5):387–404.
  • [16] Trifunac MD, Ivanović SS, Todorovska MI. Wave propagation in a seven-story reinforced concrete building: III, Damage detection via changes in wavenumbers. Soil Dyn Earthq Eng. 2003;23(1):65–75.
  • [17] Rahmani M, Ebrahimian M, Todorovska MI. Time-wave velocity analysis for early earthquake damage detection in buildings: application to a damaged full-scale RC building. Earthq Eng Struct Dyn. 2015;44(4):619–36.
  • [18] Ebrahimian M, Rahmani M, Todorovska MI. Nonparametric estimation of wave dispersion in high-rise buildings by seismic interferometry. Earthq Eng Struct Dyn. 2014;43(15):2361–75.
  • [19] Todorovska MI, Trifunac MD. Impulse response analysis of the Van Nuys 7-storey hotel during 11 earthquakes and earthquake damage detection. Struct Control Health Mon. 2008;15(1):90–116.
  • [20] Rahmani M, Todorovska MI. 1D system identification of buildings during earthquakes by seismic interferometry with waveform inversion of impulse responses-method and application to Millikan library. Soil Dyn Earthq Eng. 2013;47:157–74.
  • [21] Bulajić, B. Đ., Todorovska, M. I., Manić, M. I., Trifunac, M. D., Structural health monitoring study of the ZOIL building using earthquake records, Soil Dyn Earthquake Eng 133 (2020) 106105.
  • [22] Ebrahimian M, Todorovska MI. Structural system identification of buildings by a wave method based on a nonuniform Timoshenko beam model. J Eng Mech. 2015;141(8):04015022.
  • [23] García-Macías E, Ubertini F. Seismic interferometry for earthquake-induced damage identification in historic masonry towers. Mech Syst Signal Process. 2019;132:380–404.
  • [24] Prieto GA, Lawrence JF, Chung AI, Kohler MD. Impulse response of civil structures from ambient noise analysis. Bull Seismol Soc Am. 2010;100(5A):2322–8.
  • [25] Nakata, N., Snieder, R., Monitoring a building using deconvolution interferometry. II: ambient-vibration analysis, Bull Seismol Soc Am 104 (1) (2013) 204–213.
  • [26] Bindi D, Petrovic B, Karapetrou S, Manakou M, Boxberger T, Raptakis D, Pitilakis KD, Parolai S. Seismic response of an 8-story RC-building from ambient vibration analysis. Bull Earthq Eng. 2015;13(7):2095–120.
  • [27] Sun H, Mordret A, Prieto GA, Toksöz MN, Büyüköztürk O. Bayesian characterization of buildings using seismic inter-ferometry on ambient vibrations. Mech Syst Signal Process. 2017;85:468–86.
  • [28] García-Macías E, Kita A, Ubertini F. Synergistic application of operational modal analysis and ambient noise deconvolution interferometry for structural and damage identification in historic masonry structures: three case studies of Italian architectural heritage. Struct Health Mon. 2019;19(4):1250–72.
  • [29] Lacanna G, Ripepe M, Coli M, Genco R, Marchetti E. Full structural dynamic response from ambient vibration of Giotto’s bell tower in Firenze (Italy), using modal analysis and seismic interferometry. NDT & E Int. 2019;102:9–15.
  • [30] García-Macías E, Ubertini F. Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers: A case study of the Sciri Tower in Perugia. Italy Eng Struct. 2020;215:110615.
  • [31] Todorovska MI, Niu B, Lin G, Cao C, Wang D, Cui J, Wang F, Trifunac MD, Liang J. A new full-scale testbed for structural health monitoring and soil-structure interaction studies: Kunming 48-story office building in Yunnan province, China. Struct Control Health Mon. 2020;27(7):e2545.
  • [32] Gara, F., Regni, M., Roia, D., Caratterizzazione dinamica del Viadotto “Chiaravalle” per il controllo e monitoraggio ante-operam e post operam, Tech. rep., Relazione Tecnica per ANASS.p.A. – Compartimento per la viabilità per le Marche (2017).
  • [33] Dezi, L., Merlino, M., Sturbini, C., Seismic Upgrading of Chiaravalle Viaduct along the SS 76 - Falconara Airport Link Road, in: Italian Concrete Days, (2018).
  • [34] Roia, D., Regni, M., Gara, F., Carbonari, S., Dezi, F., Current state of the dynamic monitoring of the “Chiaravalle viaduct”, in: 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), IEEE, (2016), pp. 1–6.
  • [35] Regni, M., Gara, F., Dezi, F., Roia, D., Carbonari, S., Soil-Foundation Compliance Evidence of the “Chiaravalle Viaduct”, Springer, (2017), pp. 871–881.
  • [36] Gara F, Regni M, Roia D, Carbonari S, Dezi F. Evidence of coupled soil-structure interaction and site response in continuous viaducts from ambient vibration tests. Soil Dyn Earthq Eng. 2019;120:408–22.
  • [37] Wapenaar K, Draganov D, Snieder R, Campman X, Verdel A. Tutorial on seismic interferometry: Part 1-Basic principles and applications. Geophysics. 2010;75(5):75A195–209.
  • [38] Ebrahimian M, Todorovska MI. Wave propagation in a Timoshenko beam building model. J Eng Mech. 2013;140(5):04014018.
  • [39] García-Macías E, Ubertini F. MOVA/MOSS: two integrated software solutions for comprehensive structural health monitoring of structures. Mech Syst Signal Process. 2020;143:106830.
  • [40] Ubertini F, Gentile C, Materazzi AL. Automated modal identification in operational conditions and its application to bridges. Eng Struct. 2013;46:264–78.
  • [41] Au SK. Assembling mode shapes by least squares. Mech Syst Signal Process. 2011;25(1):163–79.
  • [42] Anastasopoulos, D., De Roeck, G., Reynders, E. P. B., One-year operational modal analysis of a steel bridge from high-resolution macrostrain monitoring: influence of temperature vs. retrofitting, Mechanical Systems and Signal Processing 161 (2021) 107951.
  • [43] Committee, E., Eurocode 4 EN 1994-1-1. Design of composite steel and concrete structures, European Committee: Brussels, Belgium.
  • [44] Miklowitz J. The theory of elastic waves and waveguides, vol. 22. Amsterdam: Elsevier; 2015.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-806480eb-e42f-4257-8f06-a38530d31274
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.