Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
At present, a series of petrophysical experimental studies have been carried out on the velocity dispersion and attenuation caused by wave induced fluid flow. So as many valuable theoretical models have been proposed or developed. But these studies fail to reflect the influence of different pore structure types on velocity dispersion and attenuation. Carbonate rocks have complex pore structure and strong heterogeneity. The study of the influence of pore structure on acoustic propagation characteristics at different frequencies is of great significance for further refinement of reservoir prediction. Through computed tomography scan and digital image processing, the pore structure distribution of longitudinal section of carbonate rock is obtained. On this basis, the finite difference numerical simulation of acoustic wave field is carried out, and the variation law of acoustic velocity with frequency and the relationship between acoustic velocity dispersion and attenuation coefficient are analyzed. The acoustic velocity extrapolation model based on frequency dispersion is established and compared with the experimental results to verify the effectiveness. The research results provide a theoretical basis for the prediction of carbonate reservoir parameters.
Wydawca
Czasopismo
Rocznik
Tom
Strony
723--733
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- State Key Laboratory of Oil and Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu 610500, China
- Engineering Well Logging Laboratory (Southwest Petroleum University), Key Laboratory of Well Logging, CNPC, Chengdu 610500, China
autor
- State Key Laboratory of Oil and Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu 610500, China
- Engineering Well Logging Laboratory (Southwest Petroleum University), Key Laboratory of Well Logging, CNPC, Chengdu 610500, China
autor
- State Key Laboratory of Oil and Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu 610500, China
- Engineering Well Logging Laboratory (Southwest Petroleum University), Key Laboratory of Well Logging, CNPC, Chengdu 610500, China
autor
- State Key Laboratory of Oil and Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu 610500, China
- Engineering Well Logging Laboratory (Southwest Petroleum University), Key Laboratory of Well Logging, CNPC, Chengdu 610500, China
autor
- State Key Laboratory of Oil and Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu 610500, China
- Engineering Well Logging Laboratory (Southwest Petroleum University), Key Laboratory of Well Logging, CNPC, Chengdu 610500, China
Bibliografia
- 1. Adam L, Batzle M (2008) Elastic properties of carbonates from laboratory measurements at seismic and ultrasonic frequencies. Lead Edge 27(8):1026–1032
- 2. Adam L, Batzle M, Lewallen KT et al (2009) Seismic wave attenuation in carbonates. J Geophys Res Solid Earth 114(B6):B06208
- 3. Andrew PS, Carl S, Chandra SR (1998) Ultrasonic attenuation in Glenn Pool rocks, northeastern Oklahoma. Geophysics 63(2):465–478
- 4. Batzle ML, Han DH, Hofmann R (2006) Fluid mobility and frequency dependent seismic velocity-direct measurements. Geophysics 71(1):N1–N9
- 5. Biot MA (1956) Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(168):178
- 6. Borgomano JVM, Pimienta L, Fortin J et al (2017) Dispersion and attenuation measurements of the elastic moduli of a dualporosity limestone. J Geophys Res Solid Earth 122(4):2690–2711
- 7. Born WT (1941) The attenuation constant of earth materials. Geophysics 6(2):132–148
- 8. Chapman S, Tisato N, Quintal B et al (2016) Seismic attenuation in partially saturated Berea sandstone submitted to a range of confining pressures. J Geophys Res Solid Earth 121(3):1664–1676
- 9. Duan X, Liu XJ, Liang LX et al (2020) Numerical simulation to the influence of fracture parameters on P-wave anisotropy[J]. Oil Geophys Prospect 55(3):575–583 (in Chinese)
- 10. Hamilton EL (1972) Compressional-wave attenuation in marine sediments. Geophysics 37(4):620–646
- 11. Kjartansson E (1979) Constant Q-wave propagation and attenuation. J Geophys Res 84(B9):4737–4748
- 12. Li C, Zhao JG, Wang HB et al (2020) Multi-frequency rock physics measurements and dispersion analysis on tight carbonate rocks laboratory study of velocity dispersion of the seismic wave in fluid-satutated sandstones. Chin J Geophys 63(2):627–637 (in Chinese)
- 13. Ma XY, Wang SX, Zhao JG et al (2018) Laboratory study of rocks in multi-frequency band. Prog Geophys 33(5):1943–1950 (in Chinese)
- 14. Mavko G, Jizba D (1991) Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics 56(12):1940–1949
- 15. Mavko G, Nur A (1975) Melt squirt in the asthenosphere. J Geophys Res 80(11):1444–1448
- 16. Reynold AC (1978) Boundary conditions for the numerical solution of wave propagation problems. Geophysics 43(6):1099–1110
- 17. Toksoz MN, Johnston DH, Timur A (1979) Attenuation of seismic wavesin dry and saturated rocks: I laboratory measurements. Geophysics 44(4):681–690
- 18. Wang YH (2019) A constant-Q model for general viscoelastic media. Geophys J Int 219(3):1562–1567
- 19. Wei X, Wang SX, Zhao JG et al (2015) Laboratory study of velocity dispersion of the seismic wave in fluid-satutated sandstones. Chin J Geophys 58(9):3380–3388 (in Chinese)
- 20. White JE (1975) Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40(2):224–232
- 21. Winkler KW, Nur A (1982) Seismic attenuation: effect of pore fluids and frictional sliding. Geophysics 47(1):1–15
- 22. Yang WC (1987) A resonance Q model for viscoelastic rocks. Chin J Geophys 30(4):399–411 (in Chinese)
- 23. Zhang YZ, Chu ZH, Li M et al (2001) An experimental study of acoustic dispersion of rock and extrapolation of the velocity. Chin J Geophys 44(1):103–111 (in Chinese)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80634c72-c49f-49bc-9942-2f46517da6d6