Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the synergistic depressive effect of polyaspartic acid (PASP) and zinc sulfate (ZnSO4) in the flotation separation of chalcopyrite from Cu-activated marmatite was investigated by micro-flotation experiments and ore sample flotation tests, and the possible depressive mechanism was proposed from contact angle measurements, fourier transform infrared (FT-IR) analysis, inductively coupled plasma (ICP) measurements and X-ray photoelectron spectroscopy (XPS) analysis. Microflotation tests indicated that the mixed depressant PASP/ZnSO4 (PZ) exerted strong depressive effect on Cu-activated marmatite in the pH range of 9~12, but it had little effect on chalcopyrite flotation. The ore sample flotation experiments indicated the PZ system decreased the grade of Zn in Cu concentrate by 4.18%, and the depressant consumption was reduced by more than a half. The results from contact angle measurement demonstrated that the hydrophobicity of Cu activated-marmatite surface was higher than that of chalcopyrite surface in presence of PZ. FT-IR analysis demonstrated the more intensive chemisorption of PZ on Cu-activated marmatite surface. ICP measurements showed that PASP had an excellent complexing ability with Cu2+ and Zn2+, which not only reduced the activation of Cu species, but also generated Zn-PASP complex on marmatite surface. XPS analysis indicated a stronger interaction between PZ and Cu-activated marmatite surface, and the depressant PZ may mainly react with Cu-activated marmatite surface through the copper atoms.
Słowa kluczowe
Rocznik
Tom
Strony
1192--1208
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr., wz.
Twórcy
autor
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
Bibliografia
- ALFORD, D.D., WHEELER, A.P., PETTIGREW, C.A., 1994. Biodegradation of thermally synthesized polyaspartate. J. Environ. Polym. Degr. 2, 225-236.
- BOULTON, A., FORNASIERO, D., RALSTON, J., 2001. Selective depression of pyrite with polyacrylamide polymers. Int. J. of Miner. Process. 61, 13-22.
- CAO, M., LIU, Q., 2006. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation— The role of coagulation. J. Colloid Interf. Sci. 301, 523-531.
- CHANDRA, A.P., GERSON, A.R., 2009. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv. Colloid Interfac. 145, 97-110.
- CHAU, T.T., 2009. A review of techniques for measurement of contact angles and their applicability on mineral surfaces. Miner Eng. 22, 213-219.
- CHEN, J.-M., LIU, R.-Q., SUN, W., QIU, G.-Z., 2009. Effect of mineral processing wastewater on flotation of sulfide minerals. Trans. Nonferrous Met. Soc. China 19, 454-457.
- CHEN, J., XU, L., HAN, J., SU, M., WU, Q., 2015. Synthesis of modified polyaspartic acid and evaluation of its scale inhibition and dispersion capacity. Desalination 358, 42-48.
- DAVILA-PULIDO, G.I., URIBE-SALAS, A., 2014. Effect of calcium, sulphate and gypsum on copper-activated and nonactivated sphalerite surface properties. Miner Eng. 55, 147-153.
- DEMIRBAS, A., PEHLIVAN, E., GODE, F., ALTUN, T., ARSLAN, G., 2005. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. J. Colloid Interf. Sci. 282, 20-25.
- EJTENAEI, M., NGUYEN, A.V., 2017. A comparative study of the attachment of air bubbles onto sphalerite and pyrite surfaces activated by copper sulphate. Miner Eng. 109, 14-20.
- EJTENAEI, M., PLACKOWSKI, C., NGUYEN, A.V.J.M.E., 2016. The effect of calcium, magnesium, and sulphate ions on the surface properties of copper activated sphalerite. Miner Eng. 89, 42-51.
- EJTENAEI, M.N., NGUYEN, A.V., 2017. A comparative study of the attachment of air bubbles onto sphalerite and pyrite surfaces activated by copper sulphate. Miner Eng. 109, 14-20.
- ELSHALL, H., E., ELGILLANI, D., A., ABDELKHALEK, N., A., 2000. Role of zinc sulfate in depression of lead-activated sphalerite. Int. J. of Miner. Process. 58, 67-75.
- FANG, S., XU, L., WU, H., SHU, K., XU, Y., ZHANG, Z., CHI, R., SUN, W., 2019. Comparative studies of flotation and adsorption of Pb(II)/benzohydroxamic acid collector complexes on ilmenite and titanaugite. Powder Technol. 345, 35-42.
- FANG, S., XU, L., WU, H., TIAN, J., LU, Z., SUN, W., HU, Y., 2018. Adsorption of Pb(II)/benzohydroxamic acid collector complexes for ilmenite flotation. Miner Eng. 126, 16-23.
- FORNASIERO, D., RALSTON, 2006. Effect of surface oxide/hydroxide products on the collectorless flotation of copperactivated sphalerite. Int. J. of Miner. Process. 78, 231-237.
- HUANG, P., CAO, M., LIU, Q., 2013. Selective depression of pyrite with chitosan in Pb–Fe sulfide flotation. Miner Eng. 46-47, 45-51.
- IKUMAPAYI, F., RAO, K.H., 2015. Recycling Process Water in Complex Sulfide Ore Flotation: Effect of Calcium and Sulfate on Sulfide Minerals Recovery. Miner. Process. Extr. M. 36, 45-64.
- KARTIO, I.J., BASILIO, C.I., YOON, R.H., 1998. An XPS Study of Sphalerite Activation by Copper. Langmuir 14, 5274-5278.
- KHMELEVA, T.N., CHAPELET, J.K., SKINNER, W.M., BEATTIE, D.A., 2006. Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite. Int. J. of Miner. Process. 79, 61-75.
- KOLODYNSKA, D., 2011. Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chem Eng. J. 173, 520-529.
- KOLODYNSKA, D., HUBICKI, Z., GECA, M., 2008. Application of a New-Generation Complexing Agent in Removal of Heavy Metal Ions from Aqueous Solutions. Ind. Eng. Chem. Res. 47, 3192-3199.
- KOLODYNSKA, D., HUBICKI, Z., GECA, M., 2008. Polyaspartic Acid As a New Complexing Agent in Removal of Heavy Metal Ions on Polystyrene Anion Exchangers. Ind. Eng. Chem. Res. 47, 6221-6227.
- LI, J., SONG, K., LIU, D., ZHANG, X., LAN, Z., SUN, Y., WEN, S., 2017. Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite. J. Mol. Liq. 231, 485-490.
- LIU, J., WANG, Y., LUO, D., CHEN, L., DENG, J., 2018. Comparative study on the copper activation and xanthate adsorption on sphalerite and marmatite surfaces. Appl. Surf. Sci. 439, 263-271.
- LIU, R.Q., SUN, W., HU, Y.H., WANG, D.Z., 2010. New collectors for the flotation of unactivated marmatite. Miner Eng. 23, 99-103.
- LIU, Z., SUN, Y., ZHOU, X., WU, T., TIAN, Y., WANG, Y., 2011. Synthesis and scale inhibitor performance of polyaspartic acid. J. Environ. Sci-China. 23, S153-S155.
- LOTTER, N.O., BRADSHAW, D.J., 2010. The formulation and use of mixed collectors in sulphide flotation. Miner Eng. 23, 945-951.
- MIKHLIN, Y., KARACHAROV, A., TOMASHEVICH, Y., SHCHUKAREV, A., 2016. Interaction of sphalerite with potassium n-butyl xanthate and copper sulfate solutions studied by XPS of fast-frozen samples and zeta-potential measurement. Vacuum 125, 98-105.
- MU, Y., PENG, Y., LAUTEN, R.A., 2016. The depression of copper-activated pyrite in flotation by biopolymers with different compositions. Miner Eng. 96-97, 113-122.
- PRESTIGE, C.A., SKINNER, W.M., RALSTON, J., SMART, R.S.C., 1997. Copper(II) activation and cyanide deactivation of zinc sulphide under mildly alkaline conditions. Appl. Surf. Sci. 108, 333-344.
- QIN, W., JIAO, F., SUN, W., WANG, X., LIU, B., WANG, J., ZENG, K., WEI, Q., LIU, K., 2013. Effects of sodium salt of N,N-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties. Colloids Surf. A: Physicochem. Eng. Aspects. 421, 181-192.
- QIN, W., JIAO, F., WEI, S., HE, M., HUANG, H., 2012. Selective Flotation of Chalcopyrite and Marmatite by MBT and Electrochemical Analysis. Ind. Eng. Chem. Res. 51, 11538–11546.
- QUAST, K., HOBART, G., 2006. Marmatite depression in galena flotation ☆. Miner Eng. 19, 860-869.
- RASHCHI, F., FINCH, J.A., 2006. Deactivation of Pb-contaminated sphalerite by polyphosphate. Colloids Surf. A: Physicochem. Eng. Aspects. 276, 87-94.
- REDDY, G.S., REDDY, C.K., SEKHAR, D.M.R., RAVINDRANATH, K., CHULET, M.R., 1991. Effect of formaldehyde and nickel sulphate solutions on the activation of cyanide-depressed sphalerite. Miner Eng. 4, 151-160.
- SARQUIS, P.E., MENEDEZ-AGUADO, J.M., MAHAMUD, M.M., DZIOBA, R., 2014. Tannins: the organic depressants alternative in selective flotation of sulfides. J. Clean Prod. 84, 723-726.
- SHEN, W.Z., FORMASIERO, D., RALSTON, J., 2001. Flotation of sphalerite and pyrite in the presence of sodium sulfite. Int. J. of Miner. Process. 63, 17-28.
- SIS, H., OZBAYOGLU, G., SARIKAYA, M., 2003. Comparison of non-ionic and ionic collectors in the flotation of coal fines. Miner Eng. 16, 399-401.
- SUSAN, T., KARIN, B., ROLAND, M., JENS, R., LUKAS, H., RAINER, S., BERND, N., 2004. Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol. 38, 937-944.
- WANG, D., JIAO, F., QIN, W., WANG, X., 2017. Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant. Sep. Sci. Technol. 1-12.
- WU, H., TIAN, J., XU, L., FANG, S., ZHANG, Z., CHI, R., 2018. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Miner Eng. 127, 42-47.
- XIONG, D.L., HU, Y.H., QIN, W.Q., SUN, W., LIU, R.Q., 2006. Selective flotation separation of marmatite from arsenopyrite by organic depressant. J. of Cent. S. Univ. 37, 670-674.
- XIONG, T., SONG, S., JIAN, H., FENG, R., LOPEZ-VALDIVIESO, A., 2007. Activation of high-iron marmatite in froth flotation by ammoniacal copper(II) solution. Miner Eng. 20, 259-263.
- XU, L., WU, H., DONG, F., WANG, L., WANG, Z., XIAO, J., 2013. Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Miner Eng. 41, 41-45.
- XU, Y., ZHAO, L., WANG, L., XU, S., CUI, Y., 2012. Synthesis of polyaspartic acid–melamine grafted copolymer and evaluation of its scale inhibition performance and dispersion capacity for ferric oxide. Desalination 286, 285-289.
- ZHU, H., QIN, W., CHEN, C., CHAI, L., JIAO, F., JIA, W., 2018. Flotation separation of fluorite from calcite using polyaspartate as depressant. Miner Eng. 120, 80-86.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8060af95-c1f5-4f84-8297-8b0b9213a566