PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of PASP and ZnSO4 mixture as depressant in the flotation separation of chalcopyrite from Cu-activated marmatite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the synergistic depressive effect of polyaspartic acid (PASP) and zinc sulfate (ZnSO4) in the flotation separation of chalcopyrite from Cu-activated marmatite was investigated by micro-flotation experiments and ore sample flotation tests, and the possible depressive mechanism was proposed from contact angle measurements, fourier transform infrared (FT-IR) analysis, inductively coupled plasma (ICP) measurements and X-ray photoelectron spectroscopy (XPS) analysis. Microflotation tests indicated that the mixed depressant PASP/ZnSO4 (PZ) exerted strong depressive effect on Cu-activated marmatite in the pH range of 9~12, but it had little effect on chalcopyrite flotation. The ore sample flotation experiments indicated the PZ system decreased the grade of Zn in Cu concentrate by 4.18%, and the depressant consumption was reduced by more than a half. The results from contact angle measurement demonstrated that the hydrophobicity of Cu activated-marmatite surface was higher than that of chalcopyrite surface in presence of PZ. FT-IR analysis demonstrated the more intensive chemisorption of PZ on Cu-activated marmatite surface. ICP measurements showed that PASP had an excellent complexing ability with Cu2+ and Zn2+, which not only reduced the activation of Cu species, but also generated Zn-PASP complex on marmatite surface. XPS analysis indicated a stronger interaction between PZ and Cu-activated marmatite surface, and the depressant PZ may mainly react with Cu-activated marmatite surface through the copper atoms.
Rocznik
Strony
1192--1208
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr., wz.
Twórcy
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
Bibliografia
  • ALFORD, D.D., WHEELER, A.P., PETTIGREW, C.A., 1994. Biodegradation of thermally synthesized polyaspartate. J. Environ. Polym. Degr. 2, 225-236.
  • BOULTON, A., FORNASIERO, D., RALSTON, J., 2001. Selective depression of pyrite with polyacrylamide polymers. Int. J. of Miner. Process. 61, 13-22.
  • CAO, M., LIU, Q., 2006. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation— The role of coagulation. J. Colloid Interf. Sci. 301, 523-531.
  • CHANDRA, A.P., GERSON, A.R., 2009. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv. Colloid Interfac. 145, 97-110.
  • CHAU, T.T., 2009. A review of techniques for measurement of contact angles and their applicability on mineral surfaces. Miner Eng. 22, 213-219.
  • CHEN, J.-M., LIU, R.-Q., SUN, W., QIU, G.-Z., 2009. Effect of mineral processing wastewater on flotation of sulfide minerals. Trans. Nonferrous Met. Soc. China 19, 454-457.
  • CHEN, J., XU, L., HAN, J., SU, M., WU, Q., 2015. Synthesis of modified polyaspartic acid and evaluation of its scale inhibition and dispersion capacity. Desalination 358, 42-48.
  • DAVILA-PULIDO, G.I., URIBE-SALAS, A., 2014. Effect of calcium, sulphate and gypsum on copper-activated and nonactivated sphalerite surface properties. Miner Eng. 55, 147-153.
  • DEMIRBAS, A., PEHLIVAN, E., GODE, F., ALTUN, T., ARSLAN, G., 2005. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. J. Colloid Interf. Sci. 282, 20-25.
  • EJTENAEI, M., NGUYEN, A.V., 2017. A comparative study of the attachment of air bubbles onto sphalerite and pyrite surfaces activated by copper sulphate. Miner Eng. 109, 14-20.
  • EJTENAEI, M., PLACKOWSKI, C., NGUYEN, A.V.J.M.E., 2016. The effect of calcium, magnesium, and sulphate ions on the surface properties of copper activated sphalerite. Miner Eng. 89, 42-51.
  • EJTENAEI, M.N., NGUYEN, A.V., 2017. A comparative study of the attachment of air bubbles onto sphalerite and pyrite surfaces activated by copper sulphate. Miner Eng. 109, 14-20.
  • ELSHALL, H., E., ELGILLANI, D., A., ABDELKHALEK, N., A., 2000. Role of zinc sulfate in depression of lead-activated sphalerite. Int. J. of Miner. Process. 58, 67-75.
  • FANG, S., XU, L., WU, H., SHU, K., XU, Y., ZHANG, Z., CHI, R., SUN, W., 2019. Comparative studies of flotation and adsorption of Pb(II)/benzohydroxamic acid collector complexes on ilmenite and titanaugite. Powder Technol. 345, 35-42.
  • FANG, S., XU, L., WU, H., TIAN, J., LU, Z., SUN, W., HU, Y., 2018. Adsorption of Pb(II)/benzohydroxamic acid collector complexes for ilmenite flotation. Miner Eng. 126, 16-23.
  • FORNASIERO, D., RALSTON, 2006. Effect of surface oxide/hydroxide products on the collectorless flotation of copperactivated sphalerite. Int. J. of Miner. Process. 78, 231-237.
  • HUANG, P., CAO, M., LIU, Q., 2013. Selective depression of pyrite with chitosan in Pb–Fe sulfide flotation. Miner Eng. 46-47, 45-51.
  • IKUMAPAYI, F., RAO, K.H., 2015. Recycling Process Water in Complex Sulfide Ore Flotation: Effect of Calcium and Sulfate on Sulfide Minerals Recovery. Miner. Process. Extr. M. 36, 45-64.
  • KARTIO, I.J., BASILIO, C.I., YOON, R.H., 1998. An XPS Study of Sphalerite Activation by Copper. Langmuir 14, 5274-5278.
  • KHMELEVA, T.N., CHAPELET, J.K., SKINNER, W.M., BEATTIE, D.A., 2006. Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite. Int. J. of Miner. Process. 79, 61-75.
  • KOLODYNSKA, D., 2011. Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chem Eng. J. 173, 520-529.
  • KOLODYNSKA, D., HUBICKI, Z., GECA, M., 2008. Application of a New-Generation Complexing Agent in Removal of Heavy Metal Ions from Aqueous Solutions. Ind. Eng. Chem. Res. 47, 3192-3199.
  • KOLODYNSKA, D., HUBICKI, Z., GECA, M., 2008. Polyaspartic Acid As a New Complexing Agent in Removal of Heavy Metal Ions on Polystyrene Anion Exchangers. Ind. Eng. Chem. Res. 47, 6221-6227.
  • LI, J., SONG, K., LIU, D., ZHANG, X., LAN, Z., SUN, Y., WEN, S., 2017. Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite. J. Mol. Liq. 231, 485-490.
  • LIU, J., WANG, Y., LUO, D., CHEN, L., DENG, J., 2018. Comparative study on the copper activation and xanthate adsorption on sphalerite and marmatite surfaces. Appl. Surf. Sci. 439, 263-271.
  • LIU, R.Q., SUN, W., HU, Y.H., WANG, D.Z., 2010. New collectors for the flotation of unactivated marmatite. Miner Eng. 23, 99-103.
  • LIU, Z., SUN, Y., ZHOU, X., WU, T., TIAN, Y., WANG, Y., 2011. Synthesis and scale inhibitor performance of polyaspartic acid. J. Environ. Sci-China. 23, S153-S155.
  • LOTTER, N.O., BRADSHAW, D.J., 2010. The formulation and use of mixed collectors in sulphide flotation. Miner Eng. 23, 945-951.
  • MIKHLIN, Y., KARACHAROV, A., TOMASHEVICH, Y., SHCHUKAREV, A., 2016. Interaction of sphalerite with potassium n-butyl xanthate and copper sulfate solutions studied by XPS of fast-frozen samples and zeta-potential measurement. Vacuum 125, 98-105.
  • MU, Y., PENG, Y., LAUTEN, R.A., 2016. The depression of copper-activated pyrite in flotation by biopolymers with different compositions. Miner Eng. 96-97, 113-122.
  • PRESTIGE, C.A., SKINNER, W.M., RALSTON, J., SMART, R.S.C., 1997. Copper(II) activation and cyanide deactivation of zinc sulphide under mildly alkaline conditions. Appl. Surf. Sci. 108, 333-344.
  • QIN, W., JIAO, F., SUN, W., WANG, X., LIU, B., WANG, J., ZENG, K., WEI, Q., LIU, K., 2013. Effects of sodium salt of N,N-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties. Colloids Surf. A: Physicochem. Eng. Aspects. 421, 181-192.
  • QIN, W., JIAO, F., WEI, S., HE, M., HUANG, H., 2012. Selective Flotation of Chalcopyrite and Marmatite by MBT and Electrochemical Analysis. Ind. Eng. Chem. Res. 51, 11538–11546.
  • QUAST, K., HOBART, G., 2006. Marmatite depression in galena flotation ☆. Miner Eng. 19, 860-869.
  • RASHCHI, F., FINCH, J.A., 2006. Deactivation of Pb-contaminated sphalerite by polyphosphate. Colloids Surf. A: Physicochem. Eng. Aspects. 276, 87-94.
  • REDDY, G.S., REDDY, C.K., SEKHAR, D.M.R., RAVINDRANATH, K., CHULET, M.R., 1991. Effect of formaldehyde and nickel sulphate solutions on the activation of cyanide-depressed sphalerite. Miner Eng. 4, 151-160.
  • SARQUIS, P.E., MENEDEZ-AGUADO, J.M., MAHAMUD, M.M., DZIOBA, R., 2014. Tannins: the organic depressants alternative in selective flotation of sulfides. J. Clean Prod. 84, 723-726.
  • SHEN, W.Z., FORMASIERO, D., RALSTON, J., 2001. Flotation of sphalerite and pyrite in the presence of sodium sulfite. Int. J. of Miner. Process. 63, 17-28.
  • SIS, H., OZBAYOGLU, G., SARIKAYA, M., 2003. Comparison of non-ionic and ionic collectors in the flotation of coal fines. Miner Eng. 16, 399-401.
  • SUSAN, T., KARIN, B., ROLAND, M., JENS, R., LUKAS, H., RAINER, S., BERND, N., 2004. Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol. 38, 937-944.
  • WANG, D., JIAO, F., QIN, W., WANG, X., 2017. Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant. Sep. Sci. Technol. 1-12.
  • WU, H., TIAN, J., XU, L., FANG, S., ZHANG, Z., CHI, R., 2018. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Miner Eng. 127, 42-47.
  • XIONG, D.L., HU, Y.H., QIN, W.Q., SUN, W., LIU, R.Q., 2006. Selective flotation separation of marmatite from arsenopyrite by organic depressant. J. of Cent. S. Univ. 37, 670-674.
  • XIONG, T., SONG, S., JIAN, H., FENG, R., LOPEZ-VALDIVIESO, A., 2007. Activation of high-iron marmatite in froth flotation by ammoniacal copper(II) solution. Miner Eng. 20, 259-263.
  • XU, L., WU, H., DONG, F., WANG, L., WANG, Z., XIAO, J., 2013. Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Miner Eng. 41, 41-45.
  • XU, Y., ZHAO, L., WANG, L., XU, S., CUI, Y., 2012. Synthesis of polyaspartic acid–melamine grafted copolymer and evaluation of its scale inhibition performance and dispersion capacity for ferric oxide. Desalination 286, 285-289.
  • ZHU, H., QIN, W., CHEN, C., CHAI, L., JIAO, F., JIA, W., 2018. Flotation separation of fluorite from calcite using polyaspartate as depressant. Miner Eng. 120, 80-86.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8060af95-c1f5-4f84-8297-8b0b9213a566
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.