Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An ammonium perchlorate (AP, NH4(ClO4)3)-based molecular perovskite energetic material (H2dabco)[NH4(ClO4)3]/carbon nanotubes (DAP/CNTs) composite was prepared and characterized. Molecular perovskite DAP samples were synthesized by a facile one-pot reaction of triethylenediamine, perchloric acid (PCA, HClO4), and AP via a molecular assembly strategy. The results showed that the mechanical sensitivity (impact and friction sensitivities: >120 cm and 20%) and electrostatic spark sensitivity (8.90 J) of the DAP/CNTs energetic composite with 10 wt.% CNTs exhibited less sensitivity than that of DAP (impact, friction and electrostatic spark sensitivities: 112.3 cm, 45%, and 5.39 J, respectively), because of the mixing desensitization mechanism of CNTs. Compared with the pure DAP, the DAP/CNTs energetic composite has better performance with respect to thermal stability, exothermic capacity, and excellent continuous combustion properties. The DAP/CNTs energetic composite has potential application in a weapons system.
Rocznik
Tom
Strony
91--105
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
autor
- Gan Su Yin Guang Chemical Industry Group CO., LTD, Baiyin, 730900, China
autor
- Shanxi Jiangyang Xing’an Industrial Explosive Materials CO., LTD, Taiyuan, 030051, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
Bibliografia
- [1] Xu, Y.; Wang, Q.; Shen, C.; Lin, Q.; Wang, P.; Lu, M. A Series of Energetic Metal Pentazolate Hydrates. Nature 2017, 549(7670): 78-81.
- [2] Zhang, C.; Yang, C.; Hu, B.; Yu, C.; Zheng, Z.; Sun, C. A Symmetric Co(N5)2(H2O)4·4H2O High-Nitrogen Compound Formed by Cobalt(II) Cation Trapping of a Cyclo-N5 − Anion. Angew. Chem. Int. Ed. 2017, 129(16): 4583-4585.
- [3] Liu, Y.; Zhang, J.; Wang, K.; Li, J.; Zhang, Q.; Shreeve, J.N.M. Bis (4-Nitraminofurazanyl-3-Azoxy) Azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. Angew. Chem. Int. Ed. 2016, 128(38): 11720-11723.
- [4] Zhang, J.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.N.M. Enforced Layer-by-Layer Stacking of Energetic Salts towards High-Performance Insensitive Energetic Materials. J. Am. Chem. Soc. 2015, 137(33): 10532-10535.
- [5] Bolton, O.; Matzger, A.J. Improved Stability and Smart-Material Functionality Realized in an Energetic Cocrystal. Angew. Chem. Int. Ed. 2011, 50(38): 8960-8963.
- [6] Li, S.; Wang, Y.; Qi, C.; Zhao, X.; Zhang, J.; Zhang, S.; Pang, S. 3D Energetic Metal-Organic Frameworks: Synthesis and Properties of High Energy Materials. Angew. Chem. Int. Ed. 2013, 52(52): 14031-14035.
- [7] Cohen, A.; Yang, Y.; Yan, Q.; Shlomovich, A.; Petrutik, N.; Burstein, L.; Pang, S.; Gozin, M. Highly Thermostable and Insensitive Energetic Hybrid Coordination Polymers Based on Graphene Oxide-Cu(II) Complex. Chem. Mater. 2016, 28(17): 6118-6126.
- [8] Zhang, W.; Zhang, J.; Deng, M.; Qi, X.; Nie, F.; Zhang, Q. A Promising High-Energy-Density Material. Nature Commun. 2017, 8(1): 181-187.
- [9] Hu, L.; Liu, Y.; Hu, S.; Wang, Y. 1T/2H Multi-phase MoS2 Heterostructure: Synthesis, Characterization and Thermal Catalysis Decomposition of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate. New J. Chem. 2019, 43(26): 10434-10441.
- [10] Chen, S.; Yang, Z.; Wang, B.; Shang, Y.; Sun, L.; He, C.; Zhou, H.; Zhang, W.; Chen, X. Molecular Perovskite High-Energetic Materials. Sci. China Mater. 2018, 61(8): 1123-1128.
- [11] Chen, S.; Shang, Y.; He, C.; Sun, L.; Ye, Z.; Zhang, W.; Chen, X. Optimizing the Oxygen Balance by Changing the A-Site Cations in Molecular Perovskite High-Energetic Materials. CrystEngComm 2018, 20(46): 7458-7463.
- [12] Yu, L.; Ren, H.; Guo, X.; Jiang, X.; Jiao, Q. A Novel ε-HNIW-Based Insensitive High Explosive Incorporated with Reduced Graphene Oxide. Therm. Anal. Calorim. 2014, 117(3): 1187-1199.
- [13] Hu, L.; Du, Z.; Liu, Y.; Gong, S.; Guang, C.; Li, X.; Yang, Z.; Jia, Q.; Liang, K. Green Fabrication of Nanoscale Energetic Molecular Perovskite (H2dabco) [Na(ClO4)3] with Reduced Mechanical Sensitivity. Cent. Eur. J. Energ. Mater. 2021, 18(3): 369-384.
- [14] Liu, Y.; Hu. L.; Gong, S.; Guang, C.; Li, L.; Hu, S.; Deng, P. Study of Ammonium Perchlorate-Based Molecular Perovskite (H2DABCO)[NH4(ClO4)3]/Graphene Energetic Composite with Insensitive Performance. Cent. Eur. J. Energ. Mater. 2020, 17(3): 451-469.
- [15] Zhang, J.; Du, Y.; Dong, K.; Su, H.; Zhang, S.; Li, S.; Pang, S. Taming Dinitramide Anions within an Energetic Metal-Organic Framework: A New Strategy for Synthesis and Tunable Properties of High Energy Materials. Chem. Mater. 2016, 28(5): 1472-1480.
- [16] Yan, Q.; Cohen, A.; Petrutik, N.; Shlomovich, A.; Burstein, L.; Pang, S.; Gozin, M. Highly Insensitive and Thermostable Energetic Coordination Nanomaterials Based on Functionalized Graphene Oxides. J. Mater. Chem. A 2016, 4(25): 9941-9948.
- [17] Yan, Q.; Gozin, M.; Zhao, F.Q.; Cohen, A.; Pang, S. Highly Energetic Compositions Based on Functionalized Carbon Nanomaterials. Nanoscale 2016, 8(9): 4799-4851.
- [18] Hu, L.; Hu, S.; Cao, X.; Li, J. Study on the Initiation Capacities of Conical Ring Booster Pellets. Cent. Eur. J. Energ. Mater. 2014, 11(3): 335-348.
- [19] Hu, L.; Gong, S.; Liu, Y.; Li, L.; Guang, C.; Zhi, X.; Hu, S. Fast Cook-Off Analysis of the PBXN-5 Booster Explosive. Int. J. Energ. Mater. Ch. 2020, 19(4): 307-318.
- [20] Hu, L.; Liang, K.; Liu, Y.; Yang, Y.; Du, Z.; Yang, Z.; Li, X.; Lv, T. The p-t Relationship between Booster Pellet and Main Charge under Shock Wave Initiation. Int. J. Energ. Mater. Ch. 2021, 20(2): 33-46.
- [21] Zhang, C. On the Energy & Safety Contradiction of Energetic Materials and the Strategy for Developing Low-Sensitive High-Energetic Materials. Chin. J. Energ. Mater. 2018, 26(1): 2-10.
- [22] Li, R.; Wang, J.; Shen, J.; Hua, C.; Yang, G. Preparation and Characterization of Insensitive HMX/Graphene Oxide Composites. Propellants Explos. Pyrotech. 2013, 38(6): 798-804.
- [23] Liu, T.; Geng, C.; Zheng, B.; Li, S.; Luo, G. Encapsulation of Cyclotetramethylenetetranitramine (HMX) by Electrostatically Self-Assembled Graphene Oxide for Desensitization. Propellants Explos. Pyrotech. 2017, 42(9): 1057-1065.
- [24] Wang, J.; Chen, S.; Yao, Q.; Jin, S.; Zhao, S.; Yu, Z.; Li, J.; Shu, Q. Preparation, Characterization, Thermal Evaluation and Sensitivities of TKX-50/GO Composite. Propellants Explos. Pyrotech. 2017, 42(9): 1104-1110.
- [25] Li, H.; Ren, H.; Jiao, Q.; Du, S.; Yu, L. Fabrication and Properties of Insensitive CNT/HMX Energetic Nanocomposites as Ignition Ingredients. Propellants Explos Pyrotech. 2016, 41(1): 126-135.
- [26] Rao, R.; Sakuntala, T.; Deb, S.K. Order-Disorder Transition in Triethylenediamine: A Raman Scattering Study. J. Mol. Struct. 2006, 789(1-3): 195-199.
- [27] Chakraborty, T.; Khatri, S.S.; Verma, A.L. Temperature-Dependent Raman Study of Ammonium Perchlorate Single Crystals: The Orientational Dynamics of the NH+ 4 Ions and Phase Transitions. J. Chem. Phys. 1986, 84(12): 7018-7027.
- [28] Farhadian, A.H.; Tehrani, M.K.; Keshavarz, M.H.; Darbani, S.M.R. Raman Spectroscopy Combined with Principle Component Analysis to Investigate the Aging of High Energy Materials. Laser Phys. 2017, 27(7): 075701.
- [29] Li, X.; Huang, B.; Li, R.; Zhang, H.; Qin, W.; Qiao, Z.; Liu, Y.; Yang, G. Laser-Ignited Relay-Domino-Like Reactions in Graphene Oxide/CL-20 Films for High-Temperature Pulse Preparation of Bi-Layered Photothermal Membranes. Small 2019, 15(20): 1900338-1900347.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-805d2c0a-8e04-4423-a40d-980f8495a4af