PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new class of operators, larger than ∗ -finite operators, named generalized ∗ -finite operators and noted by GF∗ (H) is introduced, where: GF∗ (H) = {(A, B) ∈ B(H) × B(H) : ∥TA - BT∗ - λI∥ ≥ ∣λ∣, ∀λ ∈ C, ∀T ∈ B(H)}. Basic properties are given. Some examples are also presented.
Wydawca
Rocznik
Strony
311--317
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Faculty of Economics Sciences and Management, Laboratory of Mathematics, Informatics and Systems (LAMIS), Larbi Tebessi University, Tebessa, Algeria
autor
  • Department of Mathematics and Computer Science, Laboratory of Mathematics, Informatics and Systems (LAMIS), Larbi Tebessi University, Tebessa, Algeria
Bibliografia
  • [1] P. Šemrl, On Jordan ∗ -derivations and an application, Colloq. Math. 59 (1990), 241–251, https://doi.org/10.4064/cm-59-2-241-251 .
  • [2] J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), no. 1, 273–279, https://doi.org/10.2140/pjm.1971.38.273 .
  • [3] J. G. Stampfli, Derivations on B(H): The range, Ill. J. Math. 17 (1973), no. 3, 518–524, https://doi.org/10.1215/ijm/1256051617 .
  • [4] L. Molnár, The range of a Jordan ∗ -derivation, Math. Japon. 44 (1996), no. 2, 353–356.
  • [5] M. Brešar and B. Zalar, On the structure of Jordan ∗ -derivations, Colloq. Math. 63 (1992), 163–171, https://doi.org/10.4064/cm-63-2-163-171 .
  • [6] P. Šemrl, Jordan ∗-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), no. 2, 515–518, https://doi.org/10.1090/S0002-9939-1994-1186136-6.
  • [7] B. Zalar, Jordan ∗-derivations and quadratic functionals on octonion algebras, Comm. Algebra 22 (1994), no. 8, 2845–2859, https://doi.org/10.1080/00927879408824996.
  • [8] A. Guangyu and Y. Ying, Characterizations of Jordan∗ -derivations on Banach ∗ -algebras, Pure. Appl. Math. J. 9 (2020), no. 5, 96–100, https://doi.org/10.11648/j.pamj.20200905.13.
  • [9] P. Battyanyi, On the range of a Jordan ∗-derivation, Comment. Math. Univ. Carol. 37 (1996), no. 4, 659–665.
  • [10] B. Zalar, Jordan ∗-derivations pairs and quadratic functionals on modules over ∗ -rings, Aequationes Math. 54 (1997), no. 1, 31–43, https://doi.org/10.1007/BF02755444.
  • [11] J. P. Williams, Finite operators, Proc. Amer. Math. Soc. 26 (1970), no. 1, 129–135, https://doi.org/10.1090/S0002-9939-1970-0264445-6.
  • [12] S. Mecheri, Finite operators, Demonstr. Math. 35 (2002), no. 2, 357–366, https://doi.org/10.1515/dema-2002-0216.
  • [13] S. Mecheri, Generalized finite operators, Demonstr. Math. 38 (2005), no. 1, 163–167, https://doi.org/10.1515/dema-2005-0118.
  • [14] S. Bouzenada, Generalized finite operators and orthogonality, SUT J. Math. 47 (2011), no. 1, 15–23, http://doi.org/10.20604/00000977 .
  • [15] H. Messaoudene, Finite operators, J. Math. Syst. Sci. 3 (2013), no. 4, 190–194.
  • [16] H. Messaoudene, Study of classes of operators where the distance of the identity operator and the derivation range is maximal or minimal, Int. J. Math. Anal. 8 (2014), no. 11, 503–511, https://doi.org/10.12988/ijma.2014.4245 .
  • [17] S. Mecheri and T. Abdelatif, Range kernel orthogonality and finite operators, Kyungpook Math. J. 55 (2015), 63–71, https://doi.org/10.5666/KMJ.2015.55.1.63.
  • [18] N. H. Hamada, Jordan *-derivations on B(H), Ph.D. Thesis, University of Baghdad, Baghdad, 2002.
  • [19] N. H. Hamada, Notes on ∗-finite operators class, Cogent Math. 4 (2017), no. 1, 1316451, https://doi.org/10.1080/23311835.2017.1316451 .
  • [20] K. Tanahashi, On log-hyponormal operators, Integr. Equ. Oper. Theory 34 (1999), no. 3, 364–372, https://doi.org/10.1007/BF01300584 .
  • [21] T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389–403.
  • [22] P. R. Halmos, A Hilbert Space Problem Book, 2nd edition, Springer- Verlag, New York, 1962.
  • [23] S. Mecheri, Finite operators and orthogonality, Nihonkai Math. J. 19 (2008), 53–60.
  • [24] G. Helmberg, Introduction to Spectral Theory in Hilbert Space, North-Holland Publishing Company, London, 1969.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-805cdd6c-edbc-438a-8dc5-7d0cb53d9302
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.