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Abstract: The minimum energy control problem for the positive time-varying linear systems is formulated and solved. Sufficient conditions 
for the existence of solution to the problem are established. A procedure for solving of the problem is proposed and illustrated by a numeri-
cal example.  

Keywords: Positive, Continuous-Time, Minimum Energy Control, Procedure 

1. INTRODUCTION 

A dynamical system is called positive if its trajectory starting 
from any nonnegative initial state remains forever in the positive 
orthant for all nonnegative inputs. An overview of state of the art 
in positive system theory is given in the monographs (Farina and 
Rinaldi,2000; Kaczorek, 2001b). Variety of models having positive 
behavior can be found in engineering, economics, social sciences, 
biology and medicine, etc. 

The positive fractional linear systems have been investigated 
in Kaczorek (2008a, 2011c,d, 2012). Stability of fractional linear 
1D discrete–time and continuous-time systems has been investi-
gated in the papers (Busłowicz, 2008; Dzieliński and Sierociuk, 
2008; Kaczorek, 2012) and of 2D fractional positive linear systems 
in Kaczorek (2009). The notion of practical stability of positive 
fractional discrete-time linear systems has been introduced 
in Kaczorek (2008b). The minimum energy control problem 
for standard linear systems has been formulated and solved by 
Klamka (1976, 1977, 1983, 1991, 1993, 2010) and for 2D linear 
systems with variable coefficients in Kaczorek and Klamka (1986). 
The controllability and minimum energy control problem of frac-
tional discrete-time linear systems has been investigated by 
Klamka (2010). The minimum energy control of fractional positive 
continuous-time linear systems has been addressed in Kaczorek 
(2014b) and for descriptor positive discrete-time linear systems 
in Kaczorek (2014a). 

In this paper the minimum energy control problem for positive 
time-varying linear systems will be formulated and solved.  

The paper is organized as follows. In section 2 the basic defi-
nitions and theorems of the positive time-varying linear systems 
are recalled and the necessary and sufficient conditions for the 
reachability of the positive systems are given. The minimum ener-
gy control problem of the positive time-varying linear systems is 
formulated and solved in section 3. Sufficient conditions for the 
existence of solution of the problem are established and a proce-
dure for computation of the optimal inputs and the minimum value 
of the performance index are also presented. Concluding remarks 
are given in section 4. 

The following notation will be used: ℜ – the set of real num-

bers, ℜ𝑛×𝑚 – the set of n × m real matrices, ℜ+
𝑛×𝑚 – the set 

of 𝑛 × 𝑚 matrices with nonnegative entries and ℜ+
𝑛 = ℜ+

𝑛×1, 
𝑀𝑛 – the set of 𝑛 × 𝑛 Metzler matrices (real matrices with 
nonnegative off-diagonal entries), 𝐼𝑛 – the 𝑛 × 𝑛 identity matrix, 

𝐴𝑇  – the transpose matrix 𝐴.  

2. POSITIVE TIME-VARYING LINEAR SYSTEMS  
AND THEIR REACHABILITY 

Consider the time-varying linear system 

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) (2.1) 

where 𝑥(𝑡) ∈ ℜ𝑛 and 𝑢(𝑡) ∈ ℜ𝑚 are the state and input 
vectors and 𝐴(𝑡) ∈ ℜ𝑛×𝑛 , 𝐵(𝑡) ∈ ℜ𝑛×𝑚 with continuous-time 
entries. 

The solution of equation (2.1) has the form 

𝑥(𝑡) = Φ(𝑡, 𝑡0)𝑥0 

+ ∫ Φ(𝑡, τ)𝐵(𝑡)𝑢(τ)𝑑τ,    𝑥(𝑡0) = 𝑥𝑡0

𝑡

0

 
(2.2) 

where Φ(𝑡, 𝑡0) is the fundamental matrix defined by 

Φ(𝑡, 𝑡0) = 𝐼𝑛 + ∫ 𝐴(τ)𝑑τ

𝑡

𝑡0

+ ∫ 𝐴(τ) ∫ 𝐴(τ1)𝑑τ1

τ

𝑡0

𝑑τ

𝑡

𝑡0

+. .. 

(2.3a) 

 
If 𝐴(𝑡1)𝐴(𝑡2) = 𝐴(𝑡2)𝐴(𝑡1) for 𝑡1, 𝑡2 ∈ [𝑡0, ∞), then 

(2.3a) takes the form (Gantmacher, 1959) 

�̅�(𝑡, 𝑡0) = 𝑒𝑥𝑝 (∫ 𝐴(𝜏)𝑑𝜏
𝑡

𝑡0
).                         (2.3b) 

The fundamental matrix 𝛷(𝑡, 𝑡0) satisfies the matrix differen-
tial equation 

�̇�(𝑡, 𝑡0) = 𝐴(𝑡)𝛷(𝑡, 𝑡0)                                  (2.4) 
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and the initial condition 𝛷(𝑡0, 𝑡0) = 𝐼𝑛. 
Lemma 2.1. The fundamental matrix satisfies 

𝛷(𝑡, 𝑡0) ∈ ℜ+
𝑛×𝑛 for 𝑡 ≥ 𝑡0                               (2.5) 

if and only if the off-diagonal entries 𝑎𝑖𝑗 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, . . . , 𝑛 

of the matrix A(t) satisfy the condition 

∫ 𝑎𝑖𝑗(τ)𝑑τ
𝑡

𝑡0
≥ 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, . . . , 𝑛.                       (2.6) 

Proof is given in Kaczorek (2001a). 
Definition 2.1. The system (2.1) is called the (internally) positive 
if and only if 𝑥(𝑡) ∈ ℜ+

𝑛 , 𝑡 ≥ 𝑡0 for any initial conditions 𝑥𝑡0
∈

ℜ+
𝑛  and all inputs 𝑢(𝑡) ∈ ℜ+

𝑚 , 𝑡 ≥ 𝑡0. 
Theorem 2.1. The time-varying linear system (2.1) is positive 
if and only if the off-diagonal entries of the matrix A(t) satisfy the 
condition (2.6) and 𝐵(𝑡) ∈ ℜ+

𝑛×𝑚  for 𝑡 ≥ 𝑡0. 
Definition 2.2. The system (2.1) is called reachable in time 
𝑡𝑓 − 𝑡0 if for any given final state 𝑥𝑓 ∈ ℜ+

𝑛  there exists an input 

𝑢(𝑡) ∈ ℜ+
𝑚, for 𝑡 ∈ [𝑡0, 𝑡𝑓] that steers the state of the system 

from zero initial state 𝑥(𝑡0) = 𝑥𝑡0
 to the state xf, i.e. 𝑥(𝑡𝑓) =

𝑥𝑓. 

A real square matrix is called monomial if each its row and 
each its column contains only one positive entry and the remain-
ing entries are zero. 
Theorem 2.2. The positive system (2.1) is reachable in time 
𝑡𝑓 − 𝑡0 if and only if  

𝑅𝑓 = ∫ Φ(𝑡𝑓 , τ)𝐵(τ)𝐵𝑇(τ)Φ𝑇(𝑡𝑓 , τ)𝑑τ
𝑡𝑓

𝑡0
                         (2.7) 

is a monomial matrix. The input vector which steers the state 
of the system (2.1) from 𝑥(𝑡0) = 𝑥𝑡0

 to xf is given by 

𝑢(𝑡) = 𝐵𝑇(τ)Φ𝑇(𝑡𝑓 , 𝑡)𝑅𝑓
−1𝑥𝑓  for 𝑡 ∈ [𝑡0, 𝑡𝑓].                  (2.8) 

Proof. It is well-known (Kaczorek, 2001b) that the inverse matrix 
𝑅𝑓

−1 ∈ ℜ+
𝑛×𝑛 if and only if the matrix 𝑅𝑓 is monomial. In this case 

the input 𝑢(𝑡) ∈ ℜ+
𝑚 given by (2.8) steers the state of the system 

from  𝑥(𝑡0) = 𝑥𝑡0
 to the state xf. Substituting (2.8) into (2.2) for 

𝑡 = 𝑡𝑓 and 𝑥(𝑡0) = 𝑥𝑡0
 we obtain 

𝑥(𝑡𝑓) = ∫ Φ(𝑡𝑓 , τ)𝐵(τ)𝐵𝑇(τ)Φ𝑇(𝑡𝑓 , τ)𝑅𝑓
−1𝑥𝑓𝑑τ

𝑡𝑓

𝑡0

    = [∫ Φ(𝑡𝑓 , τ)𝐵(τ)𝐵𝑇(τ)Φ𝑇(𝑡𝑓 , τ)𝑑τ
𝑡𝑓

𝑡0
] 𝑅𝑓

−1𝑥𝑓 = 𝑥𝑓 .
(2.9) 

Therefore, the positive system (2.1) is reachable in time 
tf − t0 if and only if the matrix (2.7) is monomial. □ 

3. MINIMUM ENERGY CONTROL PROBLEM 

Consider the positive system (2.1) reachable in time tf − t0. 
If the system is reachable in time 𝑡 ∈ [𝑡0, 𝑡𝑓], then usually there 

exists many different inputs u(t) ∈ ℜ+
n  that steers the state of the 

system from 𝑥(𝑡0) = 𝑥𝑡0
= 0 to 𝑥𝑓 = 𝑥(𝑡𝑓) ∈ ℜ+

𝑛 . Among 

these inputs we are looking for an input 𝑢(𝑡) ∈ ℜ+
𝑛  that minimiz-

es the performance index 

𝐼(𝑢) = ∫ 𝑢𝑇(τ)𝑄𝑢(τ)𝑑τ
𝑡𝑓

𝑡0
                             (3.1) 

where 𝑄 ∈ ℜ+
𝑛×𝑛  is a symmetric positive defined matrix 

and 𝑄−1 ∈ ℜ+
𝑛×𝑛.  

The minimum energy control problem for the positive time-

varying linear systems (2.1) can be stated as follows: Given the 
matrices 𝐴(𝑡), 𝐵(𝑡) and 𝑄 ∈ ℜ+

𝑛×𝑛 of the performance index 
(3.1), 𝑥𝑓 ∈ ℜ+

𝑛 , 𝑡0, and 𝑡𝑓 > 0, find an input 𝑢(𝑡) ∈ ℜ+
𝑛  for 

𝑡 ∈ [𝑡0, 𝑡𝑓] that steers the state vector of the system from 

𝑥𝑡0
= 0 to 𝑥𝑓 ∈ ℜ+

𝑛  and minimizes the performance index (3.1). 

To solve the problem we define the matrix 

𝑊 = 𝑊(𝑡𝑓 , 𝑄)

= ∫ Φ(𝑡𝑓 , τ)𝐵(τ)𝑄−1𝐵𝑇(τ)Φ𝑇(𝑡𝑓 , τ)𝑑τ

𝑡𝑓

𝑡0

 (3.2) 

From (3.2) and Theorem 2.2 it follows that the matrix (3.2) 
is monomial if and only if the fractional positive system (2.1) 
is reachable in time [𝑡0, 𝑡𝑓]. In this case we may define the input 

�̂�(𝑡) = 𝑄−1𝐵𝑇(𝑡)Φ𝑇(𝑡𝑓 , 𝑡)𝑊−1𝑥𝑓 for 𝑡 ∈ [𝑡0, 𝑡𝑓].           (3.3) 

Note that the input (3.3) satisfies the condition u(t) ∈ ℜ+
n  

for 𝑡 ∈ [𝑡0, 𝑡𝑓] if 

𝑄−1 ∈ ℜ+
𝑛×𝑛 and 𝑊−1𝑥𝑓 ∈ ℜ+

𝑛 .                      (3.4) 

Theorem 3.1. Let the positive system (2.1) be reachable in time 
[𝑡0, 𝑡𝑓] and let �̅�(𝑡) ∈ ℜ+

𝑛  for 𝑡 ∈ [𝑡0, 𝑡𝑓] be an input that steers 

the state of the positive system (2.1) from 𝑥𝑡0
= 0 to 𝑥𝑓 ∈ ℜ+

𝑛 . 

Then the input (3.3) also steers the state of the system from 
𝑥𝑡0

= 0 to 𝑥𝑓 ∈ ℜ+
𝑛  and minimizes the performance index (3.1), 

i.e. 𝐼(�̂�) ≤ 𝐼(�̅�). 
The minimal value of the performance index (3.1) is equal to 

𝐼(�̂�) = 𝑥𝑓
𝑇𝑊−1𝑥𝑓.                                   (3.5) 

Proof. If the conditions (3.4) are met then the input (3.3) is well 
defined and �̂�(𝑡) ∈ ℜ+

𝑛  for 𝑡 ∈ [𝑡0, 𝑡𝑓]. We shall show that the 

input steers the state of the system from 𝑥𝑡0
= 0 to 𝑥𝑓 ∈ ℜ+

𝑛 . 

Substitution of (3.3) into (2.2) for 𝑡 = 𝑡𝑓 and 𝑥𝑡0
= 0 yields 

𝑥(𝑡𝑓) = ∫ Φ(𝑡𝑓 , τ)𝐵(τ)�̂�(τ)𝑑τ
𝑡𝑓

𝑡0

    = ∫ Φ(𝑡𝑓 , τ)𝐵(τ)𝑄−1𝐵𝑇(τ)Φ𝑇(𝑡𝑓 , τ)𝑑τ
𝑡𝑓

𝑡0
𝑊−1𝑥𝑓

    = 𝑥𝑓

       (3.6) 

since (3.2) holds. By assumption the inputs �̅�(𝑡) and �̂�(𝑡), 

𝑡 ∈ [𝑡0, 𝑡𝑓] steers the state of the system from 𝑥𝑡0
= 0 to 

𝑥𝑓 ∈ ℜ+
𝑛 . Hence 

𝑥𝑓 = ∫ Φ(𝑡𝑓 , τ)𝐵(τ)�̅�(τ)𝑑τ

𝑡𝑓

𝑡0

= ∫ Φ(𝑡𝑓 , τ)𝐵(τ)�̂�(τ)𝑑τ

𝑡𝑓

𝑡0

 

(3.7a) 

or 

∫ Φ(𝑡𝑓 , τ)𝐵(τ)[�̅�(τ) − �̂�(τ)]𝑑τ
𝑡𝑓

𝑡0
= 0.                  (3.7b) 

By transposition of (3.7b) and postmultiplication by W−1xf we 
obtain 

∫ [�̅�(τ) − �̂�(τ)]𝑇𝐵𝑇(τ)Φ𝑇(𝑡𝑓 , τ)𝑑τ𝑊−1𝑥𝑓
𝑡𝑓

𝑡0
= 0.           (3.8) 

Substitution of (3.3) into (3.8) yields 
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∫ [�̅�(τ) − �̂�(τ)]𝑇𝐵𝑇(τ)Φ𝑇(𝑡𝑓 , τ)𝑑τ𝑊−1𝑥𝑓
𝑡𝑓

𝑡0

    = ∫ [�̅�(τ) − �̂�(τ)]𝑇𝑄�̂�(τ)𝑑τ
𝑡𝑓

𝑡0
= 0.

                    (3.9) 

Using (3.9) it is easy to verify that 

∫ �̅�(τ)𝑇𝑄�̅�(τ)𝑑τ
𝑡𝑓

𝑡0
= ∫ �̂�(τ)𝑇𝑄�̂�(τ)𝑑τ

𝑡𝑓

𝑡0

    + ∫ [�̅�(τ) − �̂�(τ)]𝑇𝑄[�̅�(τ) − �̂�(τ)]𝑑τ
𝑡𝑓

𝑡0
.
               (3.10) 

From (3.10) it follows that I(û) < I(u̅) since the second term 
in the right-hand side of the inequality is nonnegative.  

To find the minimal value of the performance index (3.1) we 
substitute (3.3) into (3.1) and we obtain 

𝐼(�̂�) = ∫ �̂�𝑇(τ)𝑄�̂�(τ)𝑑τ
𝑡𝑓

0

    = 𝑥𝑓
𝑇𝑊−1 ∫ Φ(𝑡𝑓 , τ)𝐵(τ)𝑄−1𝐵𝑇(τ)Φ𝑇(𝑡𝑓 , τ)𝑑τ

𝑡𝑓

0
𝑊−1𝑥𝑓

    = 𝑥𝑓
𝑇𝑊−1𝑥𝑓

 

since (3.2) holds. □ 
From the above considerations we have the following proce-

dure for computation the optimal inputs that steers the state of the 
system from 𝑥𝑡0

= 0 to 𝑥𝑓 ∈ ℜ+
𝑛  and minimize the performance 

index (3.1). 
Procedure 3.1. 
Step 1. Knowing the matrix 𝐴(𝑡) compute Φ(𝑡). 
Step 2. Using (3.2) compute the matrix W . 
Step 3. Using (3.3) compute the input �̂�(𝑡). 
Step 4. Using (3.5) compute the minimal value of the 
performance index. 
Example 3.1. Consider the positive system (2.1) for 𝑡0 = 0 with 
matrices 

𝐴(𝑡) = [2 0
0 𝑡

] , 𝐵(𝑡) = [
0 𝑒𝑡

√𝑡 0
]                    (3.12) 

and the performance index (3.1) with  

𝑄 = [2 0
0 2

].                                        (3.13) 

By Theorems 2.1 and 2.2 the system is positive and reachable 
in time 𝑡𝑓 − 𝑡0. Therefore, there exists an input u(t) that steers 

the state of the system from zero state to 𝑥𝑓 = [2 1]𝑇 in time 

𝑡𝑓 − 𝑡0 for 𝑡0 = 0, 𝑡𝑓 = 1.  

Using the Procedure 3.1 we obtain the following: 
Step 1. Using (2.3a) we obtain  

�̅�(1, 𝜏) = 𝑒𝑥𝑝 (∫ 𝐴(𝜏)𝑑𝜏
1

𝜏
) =

[
𝑒𝑥𝑝(2(1 − 𝜏)) 0

0 𝑒𝑥𝑝(0.5(1 − 𝜏2))
].                        (3.14) 

Step 2. Using (3.2), (3.13) and (3.14) we obtain 

𝑊 = ∫ Φ̅(1, τ)𝐵(τ)𝑄−1𝐵𝑇(τ)Φ̅𝑇(1, τ)𝑑τ
𝑡𝑓

0

    = [
0.25𝑒2(𝑒2 − 1) 0
0 0.25(𝑒 − 1)

] .
              (3.15) 

Step 3. Using (3.3) and (3.15) we have 

�̂�(𝑡) = 𝑄−1𝐵𝑇(𝑡)Φ̅𝑇(1, 𝑡)𝑊−1𝑥𝑓 =

[

2√𝑡

𝑒−1
𝑒𝑥𝑝(0.5(1 − 𝜏2))

4𝑒𝑥𝑝(−𝑡)

𝑒2−1

].                     (3.16) 

Step 4. The minimal value of the performance index 

𝐼(�̂�) = 𝑥𝑓
𝑇𝑊−1𝑥𝑓 = [2 1] 

[
0.25𝑒2(𝑒2 − 1) 0
0 0.25(𝑒 − 1)

]
−1

[2
1

]

    =
16

𝑒2(𝑒−2 − 1)
+

4

𝑒 − 1
.

 
(3.17) 

4. CONCLUDING REMARKS 

Necessary and sufficient conditions for the reachability of the 
positive time-varying linear systems have been established (Theo-
rem 2.2). The minimum energy control problem for the positive 
time-varying linear systems has been formulated and solved. 
Sufficient conditions for the existence of a solution to the problem 
has been given (Theorem 3.1). A procedure for computation of 
optimal input and the minimal value of performance index has 
been proposed. The effectiveness of the procedure has been 
demonstrated on the numerical example. The presented method 
can be extended to positive discrete-time linear systems and to 
fractional positive time-varying linear systems with bounded in-
puts. 
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